
Oracle Database 10g:
Advanced PL/SQL

Student Guide

D17220GC10

Edition 1.0

June 2004

D39598

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Authors

Nancy Greenberg
Aniket Raut

Technical Contributors
and Reviewers

Andrew Brannigan
Christoph Burandt
Dairy Chan
Yanti Chang
Laszlo Czinkoczki
Janis Fleishman
Mark Fleming
Stefan Grenstad
Craig Hollister
Bryn Llewellyn
Yi L. Lu
Marcelo Manzano
Nagavalli Pataballa
Helen Robertson
John Soltani
S Matt Taylor Jr
Ric Van Dyke

Publisher

Poornima G

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Preface

I Introduction
Course Objectives I-2
Oracle Complete Solution I-3
Course Agenda I-4
Tables Used in This Course I-5
The Order Entry Schema I-6
The Human Resources Schema I-8

1 PL/SQL Programming Concepts: Review
Objectives 1-2
PL/SQL Block Structure 1-3
Naming Conventions 1-4
Procedures 1-5
Functions 1-6
Function: Example 1-7
Ways to Execute Functions 1-8
Restrictions on Calling Functions from SQL Expressions 1-9
Guidelines for Calling Functions from SQL Expressions 1-10
PL/SQL Packages: Review 1-11
Components of a PL/SQL Package 1-12
Creating the Package Specification 1-13
Creating the Package Body 1-14
Cursor 1-15
Processing Explicit Cursors 1-17
Explicit Cursor Attributes 1-18
Cursor FOR Loops 1-19
Cursor: Example 1-20
Handling Exceptions 1-21
Exceptions: Example 1-23
Predefined Oracle Server Errors 1-24
Trapping Non-Predefined Oracle Server Errors 1-27
Trapping User-Defined Exceptions 1-28
The RAISE_APPLICATION_ERROR Procedure 1-29
Dependencies 1-31
Displaying Direct and Indirect Dependencies 1-33
Using Oracle-Supplied Packages 1-34
List of Some Oracle-Supplied Packages 1-35
DBMS_OUTPUT Package 1-36
UTL_FILE Package 1-37
Summary 1-38
Quiz Page 1-39

Contents

iii

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

2 Design Considerations
Objectives 2-2
Guidelines for Cursor Design 2-3
Cursor Variables 2-8
Using a Cursor Variable 2-9
Strong Versus Weak Cursors 2-10
Step 1: Defining a REF CURSOR Type 2-11
Step 1: Declaring a Cursor Variable 2-12
Step 1: Declaring a REF CURSOR Return Type 2-13
Step 2: Opening a Cursor Variable 2-14
Step 3: Fetching from a Cursor Variable 2-16
Step 4: Closing a Cursor Variable 2-17
Passing Cursor Variables as Arguments 2-18
Rules for Cursor Variables 2-21
Comparing Cursor Variables with Static Cursors 2-22
Predefined Data Types 2-23
Subtypes 2-24
Benefits of Subtypes 2-26
Declaring Subtypes 2-27
Using Subtypes 2-28
Subtype Compatibility 2-29
Summary 2-30
Practice Overview 2-31

3 Working with Collections
Objectives 3-2
Understanding the Components of an Object Type 3-3
Creating an Object Type 3-4
Using an Object Type 3-5
Using Constructor Methods 3-6
Retrieving Data from Object Type Columns 3-7
Understanding Collections 3-8
Describing the Collection Types 3-9
Listing Characteristics for Collections 3-11
Using Collections Effectively 3-12
Creating Collection Types 3-13
Declaring Collections: Nested Table 3-14
Understanding Nested Table Storage 3-15
Declaring Collections: Varray 3-16
Working with Collections in PL/SQL 3-17
Initializing Collections 3-18
Referencing Collection Elements 3-20
Using Collection Methods 3-21
Manipulating Individual Elements 3-24
Avoiding Collection Exceptions 3-25

iv

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Working with Collections in SQL 3-27
Using Set Operations on Collections 3-31
Using Multiset Operations on Collections 3-34
Using String Indexed Associative Arrays 3-35
Summary 3-39
Practice Overview 3-40

4 Advanced Interface Methods
Objectives 4-2
Calling External Procedures from PL/SQL 4-3
Benefits of External Procedures 4-4
External C Procedure Components 4-5
How PL/SQL Calls a C External Procedure 4-6
The extproc Process 4-7
The Listener Process 4-8
Development Steps for External C Procedures 4-9
The Call Specification 4-13
Publishing an External C Routine 4-16
Executing the External Procedure 4-17
Overview of Java 4-18
How PL/SQL Calls a Java Class Method 4-19
Development Steps for Java Class Methods 4-20
Loading Java Class Methods 4-21
Publishing a Java Class Method 4-22
Executing the Java Routine 4-24
Creating Packages for Java Class Methods 4-25
Summary 4-26
Practice Overview 4-27

5 PL/SQL Server Pages
Objectives 5-2
PSP: Uses and Features 5-3
Format of the PSP File 5-4
Development Steps for PSP 5-6
Printing the Table Using a Loop 5-12
Specifying a Parameter 5-13
Using an HTML Form to Call a PSP 5-16
Debugging PSP Problems 5-18
Summary 5-20
Practice Overview 5-21

6 Fine-Grained Access Control
Objectives 6-2
Overview 6-3
Identifying Fine-Grained Access Features 6-4
How Fine-Grained Access Works 6-5
Why Use Fine-Grained Access? 6-7

v

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Using an Application Context 6-8
Creating an Application Context 6-10
Setting a Context 6-11
Implementing a Policy 6-13
Step 2: Creating the Package 6-14
Step 3: Defining the Policy 6-16
Step 4: Setting Up a Logon Trigger 6-19
Viewing Example Results 6-20
Using Data Dictionary Views 6-21
Using the USER_CONTEXT Dictionary View 6-22
Policy Groups 6-23
More About Policies 6-24
Summary 6-26
Practice Overview 6-27

7 Performance and Tuning
Objectives 7-2
Tuning PL/SQL Code 7-3
Modularizing Your Code 7-4
Comparing SQL with PL/SQL 7-5
Using Bulk Binding 7-8
Using SAVE EXCEPTIONS 7-14
Handling FORALL Exceptions 7-15
Rephrasing Conditional Control Statements 7-16
Avoiding Implicit Data Type Conversion 7-18
Using PLS_INTEGER Data Type for Integers 7-19
Understanding the NOT NULL Constraint 7-20
Passing Data Between PL/SQL Programs 7-21
Identifying and Tuning Memory Issues 7-24
Pinning Objects 7-25
Identifying Network Issues 7-29
Native and Interpreted Compilation 7-32
Switching Between Native and Interpreted Compilation 7-34
Summary 7-36
Practice Overview 7-37

8 Analyzing PL/SQL Code
Objectives 8-2
Finding Coding Information 8-3
Using DBMS_DESCRIBE 8-8
Using ALL_ARGUMENTS 8-11
Using DBMS_UTILITY.FORMAT_CALL_STACK 8-13
Finding Error Information 8-15
Tracing PL/SQL Execution 8-20
Tracing PL/SQL: Steps 8-23

vi

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Step 1: Enable Specific Subprograms 8-24
Steps 2 and 3: Identify a Trace Level and Start Tracing 8-25
Step 4: Turn Off Tracing 8-26
Step 5: Examine the Trace Information 8-27
plsql_trace_runs and plsql_trace_events 8-28
Profiling PL/SQL Applications 8-30
Profiling PL/SQL: Steps 8-33
Profiling Example 8-34
Summary 8-37
Practice Overview 8-38

Appendix A

Appendix B

Appendix C

Appendix D

vii

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Preface

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Preface - 2

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Preface - 3

Preface
Before You Begin This Course

Before you begin this course, you should have thorough knowledge of SQL,
SQL*Plus, and working experience developing applications with PL/SQL.
Required prerequisites are Oracle Database 10g: Develop PL/SQL Program Units
or Oracle Database 10g: Program with PL/SQL .

How This Course Is Organized
Oracle Database 10g: Advanced PL/SQL is an instructor-led course featuring
lectures and hands-on exercises. Online demonstrations and practice sessions
reinforce the concepts and skills introduced.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Preface - 4

Related Publications
Oracle Publications

Title Part Number
Oracle Database Concepts 10g Release 1 (10.1) B10743-01
Oracle Database SQL Reference Release 1 (10.1) B10759-01
PL/SQL Packages and Types Reference

10g Release 1 (10.1) B10802-01
PL/SQL User's Guide and Reference

10g Release 1 (10.1) B10807-01
Oracle Database Application Developer's Guide -

Fundamentals 10g Release 1 (10.1) B10795-01
Oracle Database Application Developer's Guide -

Object-Relational Features 10g Release 1 (10.1) B10799-01
Oracle Database Performance Tuning Guide

10g Release 1 (10.1) B10752-01

Additional Publications
• System release bulletins
• Installation and User’s guides
• read.me files
• International Oracle User’s Group (IOUG) articles
• Oracle Magazine
• OTN (http://otn.oracle.com/)

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Preface - 5

Typographic Conventions
The following are two lists of typographical conventions used specifically within text or within
code.

Typographic Conventions within Text
Convention Object or Term Example

Uppercase Commands, Use the SELECT command to view
functions, information stored in the CUST_LAST_NAME
column names, column of the CUSTOMERS table.
PL/SQL objects,
schemas

Lowercase File names, where: role is the name of the role italic
syntax variables, to be created.
usernames,
passwords

Initial cap Trigger and Assign a When-Validate-Item trigger to
button names the ORD block.

Click Cancel.

Italic Books, names of For more information on the subject, see
courses and Oracle Database Concepts 10g Release 1.
manuals, and
emphasized
words or phrases Do not save changes to the database.

Quotation marks Lesson module This subject is covered in Lesson 7,
titles referenced “Performance and Tuning.”
within a course

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Preface - 6

Typographic Conventions (continued)

Typographic Conventions within Code
Convention Object or Term Example

Uppercase Commands, SELECT customer_id
functions FROM customers;

Lowercase, Syntax variables CREATE ROLE rolename;
italic

Initial cap Forms triggers Form module: ORD
Trigger level: S_ITEM.QUANTITY
item
Trigger name: When-Validate-Item
. . .

Lowercase Column names, . . .
table names, SELECT cust_last_name, cust_email
filenames, FROM customers;

PL/SQL objects EXECUTE dbms_output.put_line('a')

Bold Text that must SQLDBA> CREATE USER oe
be entered by a 2> IDENTIFIED BY oe;
user

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

Introduction

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL I-2

Copyright © 2004, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do
the following:
• Design PL/SQL packages and program units that

execute efficiently
• Write code to interface with external applications

and the operating system
• Create PL/SQL applications that use collections
• Write and tune PL/SQL code effectively to

maximize performance
• Implement a virtual private database with fine-

grained access control
• Perform code analysis to find program

ambiguities, and test, trace, and profile PL/SQL
code

Course Objectives
In this course, you learn how to use the advanced features of PL/SQL in order to design and tune
PL/SQL to interface with the database and other applications in the most efficient manner. Using
advanced features of program design, packages, cursors, extended interface methods, and
collections, you learn how to write powerful PL/SQL programs. Programming efficiency, use of
external C and Java routines, PL/SQL server pages, and fine-grained access are covered in this
course.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL I-3

Copyright © 2004, Oracle. All rights reserved.

Oracle Complete Solution

Network services

Databases Application
servers

Internet applications

Any
browser

Any
FTP client

Any
mail client

SQL

PL/SQL

Java

Clients

Presentation and
business logic

Business logic
and data

Sy
st

em
 m

an
ag

em
en

t D
evelopm

ent tools

Oracle Complete Solution
The Oracle Internet Platform is built on three core components:

• Browser-based clients to process presentation
• Application servers to execute business logic and serve presentation logic to browser-based

clients
• Databases to execute database-intensive business logic and serve data

Oracle offers a wide variety of the most advanced graphical user interface (GUI)–driven
development tools to build business applications, as well as a large suite of software applications
for many areas of business and industry. Stored procedures, functions, and packages can be
written by using SQL, PL/SQL, Java, or XML. This course concentrates on the advanced
features of PL/SQL.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL I-4

Copyright © 2004, Oracle. All rights reserved.

Course Agenda

Day 1
• PL/SQL Programming Concepts Review
• Design Considerations
• Collections
• Advanced Interface Methods

Day 2
• PL/SQL Server Pages
• Fine-Grained Access Control
• Performance and Tuning
• Analyzing PL/SQL Code

Agenda
In this two-day course, you start with a review of PL/SQL concepts before progressing into the
new and advanced topics. By the end of day one, you should have covered design considerations
for your program units, how to use collections effectively, and how to call C and Java code from
your PL/SQL programs.
On day two, you learn how to create and deploy a PL/SQL server page on a browser, how to
implement security through packages, how to analyze and identify performance issues, and how
to tune your programs.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL I-5

Copyright © 2004, Oracle. All rights reserved.

Tables Used in This Course

• Sample schemas used are:
– Order Entry (OE) schema
– Human Resources (HR) schema

• Primarily use the OE schema.
• The OE schema can view the HR tables.
• Appendix B contains more information about the

sample schemas.

Tables Used in This Course
The sample company portrayed by Oracle Database Sample Schemas operates worldwide to
fulfil orders for several different products. The company has several divisions:

• The Human Resources division tracks information about the employees and facilities of the
company.

• The Order Entry division tracks product inventories and sales of the company’s products
through various channels.

• The Sales History division tracks business statistics to facilitate business decisions.
Each of these divisions is represented by a schema.
This course primarily uses the Order Entry (OE) sample schema.
Note: More details about the sample schema are found in Appendix B.
All scripts necessary to create the OE schema reside in the
$ORACLE_HOME/demo/schema/order_entry folder.
All scripts necessary to create the HR schema reside in the
$ORACLE_HOME/demo/schema/human_resources folder.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL I-6

Copyright © 2004, Oracle. All rights reserved.

The Order Entry Schema

The Order Entry (OE) Schema
The company sells several categories of products, including computer hardware and software,
music, clothing, and tools. The company maintains product information that includes product
identification numbers, the category into which the product falls, the weight group (for shipping
purposes), the warranty period if applicable, the supplier, the status of the product, a list price, a
minimum price at which a product will be sold, and a URL address for manufacturer
information.
Inventory information is also recorded for all products, including the warehouse where the
product is available and the quantity on hand. Because products are sold worldwide, the
company maintains the names of the products and their descriptions in several different
languages.
The company maintains warehouses in several locations to facilitate filling customer orders.
Each warehouse has a warehouse identification number, name, and location identification
number.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL I-7

The Order Entry (OE) Schema (continued)
Customer information is tracked in some detail. Each customer is assigned an identification
number. Customer records include name, street address, city or province, country, phone
numbers (up to five phone numbers for each customer), and postal code. Some customers order
through the Internet, so e-mail addresses are also recorded. Because of language differences
among customers, the company records the NLS language and territory of each customer. The
company places a credit limit on its customers to limit the amount they can purchase at one time.
Some customers have account managers, whom we monitor. We keep track of a customer’s
phone number. At present, we do not know how many phone numbers a customer might have,
but we try to keep track of all of them. Because of the language differences of our customers, we
identify the language and territory of each customer.
When a customer places an order, the company tracks the date of the order, the mode of the
order, status, shipping mode, total amount of the order, and the sales representative who helped
place the order. This may be the same individual as the account manager for a customer, it may
be someone else, or, in the case of an order over the Internet, the sales representative is not
recorded. In addition to the order information, the company also tracks the number of items
ordered, the unit price, and the products ordered.
For each country in which it does business, the company records the country name, currency
symbol, currency name, and the region where the country resides geographically. This data is
useful to interact with customers living in different geographic regions around the world.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL I-8

Copyright © 2004, Oracle. All rights reserved.

The Human Resources Schema

The Human Resources (HR) Schema
In the human resources records, each employee has an identification number, e-mail address, job
identification code, salary, and manager. Some employees earn a commission in addition to their
salary.
The company also tracks information about jobs within the organization. Each job has an
identification code, job title, and a minimum and maximum salary range for the job. Some
employees have been with the company for a long time and have held different positions within
the company. When an employee switches jobs, the company records the start date and end date
of the former job, the job identification number, and the department.
The sample company is regionally diverse, so it tracks the locations of not only its warehouses
but also its departments. Each company employee is assigned to a department. Each department
is identified by a unique department number and a short name. Each department is associated
with one location. Each location has a full address that includes the street address, postal code,
city, state or province, and country code.
For each location where it has facilities, the company records the country name, currency
symbol, currency name, and the region where the country resides geographically.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

PL/SQL Programming Concepts: Review

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-2

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify PL/SQL block structure
• Describe PL/SQL basics
• List restrictions and guidelines on calling

functions from SQL expressions
• Identify how explicit cursors are processed
• Handle exceptions
• Use the raise_application_error procedure
• Manage dependencies

Objectives
PL/SQL supports various programming constructs. This lesson reviews the basic concept of
PL/SQL programming. This lesson also reviews how to:

• Create subprograms
• Use cursors
• Handle exceptions
• Identify predefined Oracle server errors
• Manage dependencies

A quiz at the end of the lesson will assess your knowledge of PL/SQL.
Note: The quiz is optional. Solutions to the quiz are provided in Appendix A.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-3

Copyright © 2004, Oracle. All rights reserved.

DECLARE

BEGIN

EXCEPTION

END;

PL/SQL Block Structure

<header>
IS|AS
DECLARE

BEGIN

EXCEPTION

END;

Anonymous
PL/SQL block

Stored
program unit

PL/SQL Block Structure
An anonymous PL/SQL block structure consists of an optional DECLARE section, a mandatory
BEGIN-END block, and an optional EXCEPTION section before the END statement of the main
block.
A stored program unit has a mandatory header section. This section defines whether the program
unit is a function, procedure, or a package. A stored program unit also has other sections
mentioned for the anonymous PL/SQL block.
Every PL/SQL construct is made from one or more blocks. These blocks can be entirely
separate, or nested within one another. Therefore, one block can represent a small part of another
block, which in turn can be part of the whole unit of code.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-4

Copyright © 2004, Oracle. All rights reserved.

Naming Conventions

Advantages of proper naming conventions:
• Easier to read
• Understandable
• Give information about the functionality
• Easier to debug
• Ensure consistency

Naming Conventions
A proper naming convention makes the code easier to read and more understandable. It helps
you understand the functionality of the identifier. If the code is written using proper naming
conventions, you can easily find an error and rectify it. Most importantly, it ensures consistency
among the code written by different developers.
The following table shows the naming conventions followed in this course:

typ_customertyp_prefixType

cur_orderscur_prefixCursor

e_check_credit_limite_prefixException

p_cust_idp_prefixParameter

c_taxc_prefixConstant

v_product_namev_prefixVariable

ExampleConventionIdentifier

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-5

Copyright © 2004, Oracle. All rights reserved.

Procedures

A procedure is:
• A named PL/SQL block that performs a sequence

of actions
• Stored in the database as a schema object
• Used to promote reusability and maintainability
CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter1 [mode] datatype1,
parameter2 [mode] datatype2, ...)]

IS|AS
[local_variable_declarations; …]

BEGIN
-- actions;

END [procedure_name];

Procedures
A procedure is a named PL/SQL block that can accept parameters (sometimes referred to as
arguments). Generally, you use a procedure to perform an action. A procedure is compiled and
stored in the database as a schema object. Procedures promote reusability and maintainability.
Parameters are used to transfer data values to and from the calling environment and the
procedure (or subprogram). Parameters are declared in the subprogram header, after the name
and before the declaration section for local variables.
Parameters are subject to one of the three parameter-passing modes: IN, OUT, or IN OUT.

• An IN parameter passes a constant value from the calling environment into the procedure.
• An OUT parameter passes a value from the procedure to the calling environment.
• An IN OUT parameter passes a value from the calling environment to the procedure and a

possibly different value from the procedure back to the calling environment using the same
parameter.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-6

Copyright © 2004, Oracle. All rights reserved.

Functions

A function is:
• A block that returns a value
• Stored in the database as a schema object
• Called as part of an expression or used to provide

a parameter value

CREATE [OR REPLACE] FUNCTION function_name
[(parameter1 [mode1] datatype1, ...)]
RETURN datatype IS|AS
[local_variable_declarations; …]
BEGIN
-- actions;
RETURN expression;

END [function_name];

Functions
A function is a named PL/SQL block that can accept parameters, be invoked, and return a value.
In general, you use a function to compute a value. Functions and procedures are structured alike.
A function must return a value to the calling environment, whereas a procedure returns zero or
more values to its calling environment. Like a procedure, a function has a header, a declarative
section, an executable section, and an optional exception-handling section. A function must have
a RETURN clause in the header and at least one RETURN statement in the executable section.
Functions can be stored in the database as schema objects for repeated execution. A function that
is stored in the database is referred to as a stored function. Functions can also be created on
client-side applications.
Functions promote reusability and maintainability. When validated, they can be used in any
number of applications. If the processing requirements change, only the function needs to be
updated.
A function may also be called as part of a SQL expression or as part of a PL/SQL expression. In
the context of a SQL expression, a function must obey specific rules to control side effects. In a
PL/SQL expression, the function identifier acts like a variable whose value depends on the
parameters passed to it.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-7

Copyright © 2004, Oracle. All rights reserved.

Function: Example

• Create the function:

• Invoke the function as an expression or as a
parameter value:

CREATE OR REPLACE FUNCTION get_credit
(v_id customers.customer_id%TYPE) RETURN NUMBER IS
v_credit customers.credit_limit%TYPE := 0;

BEGIN
SELECT credit_limit
INTO v_credit
FROM customers
WHERE customer_id = v_id;
RETURN v_credit;

END get_credit;
/

EXECUTE dbms_output.put_line(get_credit(101))

Function: Example
The get_credit function is created with a single input parameter and returns the credit limit
as a number.
The get_credit function follows the common programming practice of assigning a returning
value to a local variable and uses a single RETURN statement in the executable section of the
code to return the value stored in the local variable. If your function has an exception section,
then it may also contain a RETURN statement.
Invoke a function as part of a PL/SQL expression, because the function will return a value to the
calling environment. The second code box uses the SQL*Plus EXECUTE command to call the
DBMS_OUTPUT.PUT_LINE procedure whose argument is the return value from the
get_credit function. In this case, get_credit is invoked first to calculate the credit limit
of the customer with ID 101. The credit_limit value returned is supplied as the value of the
DBMS_OUTPUT.PUT_LINE parameter, which displays the result (if you have executed a SET
SERVEROUTPUT ON).
Note: A function must always return a value. The example does not return a value if a row is not
found for a given ID. Ideally, create an exception handler to return a value as well.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-8

Copyright © 2004, Oracle. All rights reserved.

Ways to Execute Functions

• Invoke as part of a PL/SQL expression
– Using a host variable to obtain the result:

– Using a local variable to obtain the result:

• Use as a parameter to another subprogram

• Use in a SQL statement (subject to restrictions)
EXECUTE dbms_output.put_line(get_credit(101))

SELECT get_credit(customer_id) FROM customers;

VARIABLE v_credit NUMBER
EXECUTE :v_credit := get_credit(101)

DECLARE v_credit customers.credit_limit%type;
BEGIN
v_credit := get_credit(101); ...

END;

Ways to Execute Functions
If functions are designed thoughtfully, they can be powerful constructs. Functions can be
invoked in the following ways:

• As part of PL/SQL expressions: You can use host or local variables to hold the returned
value from a function. The first example in the slide uses a host variable and the second
example uses a local variable in an anonymous block.

• As a parameter to another subprogram: The third example in the slide demonstrates this
usage. The get_credit function, with all its arguments, is nested in the parameter
required by the DBMS_OUTPUT.PUT_LINE procedure. This comes from the concept of
nesting functions as discussed in the Oracle Database 10g: SQL Fundamentals I course.

• As an expression in a SQL statement: The last example shows how a function can be
used as a single-row function in a SQL statement.

Note: The restrictions and guidelines that apply to functions when used in a SQL statement are
discussed in the next few pages.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-9

Copyright © 2004, Oracle. All rights reserved.

Restrictions on Calling Functions
from SQL Expressions

• User-defined functions that are callable from SQL
expressions must:
– Be stored in the database
– Accept only IN parameters with valid SQL data

types, not PL/SQL-specific types
– Return valid SQL data types, not PL/SQL-specific

types
• When calling functions in SQL statements:

– Parameters must be specified with positional
notation

– You must own the function or have the EXECUTE
privilege

Restrictions on Calling Functions from SQL Expressions
The user-defined PL/SQL functions that are callable from SQL expressions must meet the
following requirements:

• The function must be stored in the database.
• The function parameters must be input parameters and should be valid SQL data types.
• The functions must return data types that are valid SQL data types. They cannot be

PL/SQL-specific data types such as BOOLEAN, RECORD, or TABLE. The same restriction
applies to the parameters of the function.

The following restrictions apply when calling a function in a SQL statement:
• Parameters must use positional notation. Named notation is not supported.
• You must own or have the EXECUTE privilege on the function.

Other restrictions on a user-defined function include the following:
• It cannot be called from the CHECK constraint clause of a CREATE TABLE or ALTER

TABLE statement.
• It cannot be used to specify a default value for a column.

Note: Only stored functions are callable from SQL statements. Stored procedures cannot be
called unless invoked from a function that meets the preceding requirements.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-10

Copyright © 2004, Oracle. All rights reserved.

Guidelines for Calling Functions
from SQL Expressions

Functions called from:
• A SELECT statement cannot contain DML

statements
• An UPDATE or DELETE statement on a table T

cannot query or contain DML on the same table T
• SQL statements cannot end transactions (that is,

cannot execute COMMIT or ROLLBACK operations)

Note: Calls to subprograms that break these
restrictions are also not allowed in the function.

Guidelines for Calling Functions from SQL Expressions
To execute a SQL statement that calls a stored function, the Oracle server must know whether
the function is free of specific side effects. The side effects are unacceptable changes to database
tables.
Additional restrictions apply when a function is called in expressions of SQL statements. In
particular, when a function is called from:

• A SELECT statement or a parallel UPDATE or DELETE statement, the function cannot
modify any database table

• An UPDATE or DELETE statement, the function cannot query or modify any database table
modified by that statement

• A SELECT, INSERT, UPDATE, or DELETE statement, the function cannot execute
directly or indirectly through another subprogram, a SQL transaction control statement
such as:

- A COMMIT or ROLLBACK statement
- A session control statement (such as SET ROLE)
- A system control statement (such as ALTER SYSTEM)
- Any DDL statements (such as CREATE), because they are followed by an automatic

commit

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-11

Copyright © 2004, Oracle. All rights reserved.

PL/SQL Packages: Review

PL/SQL packages:
• Group logically related components:

– PL/SQL types
– Variables, data structures, and exceptions
– Subprograms: procedures and functions

• Consist of two parts:
– A specification
– A body

• Enable the Oracle server to read multiple objects
into memory simultaneously

PL/SQL Packages: Review
PL/SQL packages enable you to bundle related PL/SQL types, variables, data structures,
exceptions, and subprograms into one container. For example, an Order Entry package can
contain procedures for adding and deleting customers and orders, functions for calculating
annual sales, and credit limit variables.
A package usually consists of two parts stored separately in the database:

• A specification
• A body (optional)

The package itself cannot be called, parameterized, or nested. After writing and compiling, the
contents can be shared with many applications.
When a PL/SQL-packaged construct is referenced for the first time, the whole package is loaded
into memory. Subsequent access to constructs in the same package does not require disk
input/output (I/O).

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-12

Copyright © 2004, Oracle. All rights reserved.

Components of a PL/SQL Package

Package
specification

Package
body

Procedure A declaration;

variable

Procedure A definition

BEGIN
…
END;

Procedure B definition …

variable

variable

Public

Private

Components of a PL/SQL Package
You create a package in two parts:

• The package specification is the interface to your applications. It declares the public types,
variables, constants, exceptions, cursors, and subprograms available for use. The package
specification may also include pragmas, which are directives to the compiler.

• The package body defines its own subprograms and must fully implement subprograms
declared in the specification part. The package body may also define PL/SQL constructs,
such as types variables, constants, exceptions, and cursors.

Public components are declared in the package specification. The specification defines a public
application programming interface (API) for users of package features and functionality. That is,
public components can be referenced from any Oracle server environment that is external to the
package.
Private components are placed in the package body and can be referenced only by other
constructs within the same package body. Private components can reference the public
components of the package.
Note: If a package specification does not contain subprogram declarations, then there is no
requirement for a package body.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-13

Copyright © 2004, Oracle. All rights reserved.

Syntax:

• The OR REPLACE option drops and re-creates the
package specification.

• Variables declared in the package specification
are initialized to NULL by default.

• All the constructs declared in a package
specification are visible to users who are granted
privileges on the package.

CREATE [OR REPLACE] PACKAGE package_name IS|AS
public type and variable declarations
subprogram specifications

END [package_name];

Creating the Package Specification

Creating the Package Specification
• To create packages, you declare all public constructs within the package specification.

- Specify the OR REPLACE option, if overwriting an existing package specification.
- Initialize a variable with a constant value or formula within the declaration, if

required; otherwise, the variable is initialized implicitly to NULL.
• The following are definitions of items in the package syntax:

- package_name specifies a name for the package that must be unique among
objects within the owning schema. Including the package name after the END
keyword is optional.

- public type and variable declarations declares public variables,
constants, cursors, exceptions, user-defined types, and subtypes.

- subprogram specifications specifies the public procedure or function
declarations.

Note: The package specification should contain procedure and function headings terminated by a
semicolon, without the IS (or AS) keyword and its PL/SQL block. The implementation of a
procedure or function that is declared in a package specification is done in the package body.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-14

Copyright © 2004, Oracle. All rights reserved.

Creating the Package Body

Syntax:

• The OR REPLACE option drops and re-creates the
package body.

• Identifiers defined in the package body are private
and not visible outside the package body.

• All private constructs must be declared before
they are referenced.

• Public constructs are visible to the package body.

CREATE [OR REPLACE] PACKAGE BODY package_name IS|AS
private type and variable declarations
subprogram bodies

[BEGIN initialization statements]
END [package_name];

Creating the Package Body
Create a package body to define and implement all public subprograms and supporting private
constructs. When creating a package body, do the following:

• Specify the OR REPLACE option to overwrite an existing package body.
• Define the subprograms in an appropriate order. The basic principle is that you must

declare a variable or subprogram before it can be referenced by other components in the
same package body. It is common to see all private variables and subprograms defined first
and the public subprograms defined last in the package body.

• The package body must complete the implementation for all procedures or functions
declared in the package specification.

The following are definitions of items in the package body syntax:
• package_name specifies a name for the package that must be the same as its package

specification. Using the package name after the END keyword is optional.
• private type and variable declarations declares private variables,

constants, cursors, exceptions, user-defined types, and subtypes.
• subprogram bodies specifies the full implementation of any private and/or public

procedures or functions.
• [BEGIN initialization statements] is an optional block of initialization code

that executes when the package is first referenced.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-15

Copyright © 2004, Oracle. All rights reserved.

Cursor

• A cursor is a pointer to the private memory area
allocated by the Oracle server.

• There are two types of cursors:
– Implicit cursors: Created and managed internally by

the Oracle server to process SQL statements
– Explicit cursors: Explicitly declared by the

programmer

Cursor
You have already learned that you can include SQL statements that return a single row in a
PL/SQL block. The data retrieved by the SQL statement should be held in variables using the
INTO clause.
Where Does Oracle Process SQL Statements?
The Oracle server allocates a private memory area called the context area for processing SQL
statements. The SQL statement is parsed and processed in this area. Information required for
processing and information retrieved after processing are all stored in this area. Because this area
is internally managed by the Oracle server, you have no control over this area. A cursor is a
pointer to the context area. However, this cursor is an implicit cursor and is automatically
managed by the Oracle server. When the executable block contains a SQL statement, an implicit
cursor is created.
There are two types of cursors:

• Implicit cursors: Implicit cursors are created and managed by the Oracle server. You do
not have access to them. The Oracle server creates such a cursor when it has to execute a
SQL statement.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-16

Cursor (continued)
• Explicit cursors: As a programmer, you may want to retrieve multiple rows from a

database table, have a pointer to each row that is retrieved, and work on the rows one at a
time. In such cases, you can declare cursors explicitly depending on your business
requirements. Such cursors that are declared by programmers are called explicit cursors.
You declare these cursors in the declarative section of a PL/SQL block. Remember that
you can also declare variables and exceptions in the declarative section.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-17

Copyright © 2004, Oracle. All rights reserved.

Processing Explicit Cursors

The following three commands are used to process an
explicit cursor:
• OPEN

• FETCH

• CLOSE

Alternatively, you can also use a cursor FOR loops.

Processing Explicit Cursors
You declare an explicit cursor when you need exact control over query processing. You use three
commands to control a cursor:
• OPEN
• FETCH
• CLOSE

You initialize the cursor with the OPEN command, which recognizes the result set. Then you
execute the FETCH command repeatedly in a loop until all rows have been retrieved.
Alternatively, you can use a BULK COLLECT clause to fetch all rows at once. After the last row
has been processed, you release the cursor by using the CLOSE command.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-18

Copyright © 2004, Oracle. All rights reserved.

Explicit Cursor Attributes

Every explicit cursor has the following four attributes:
• cursor_name%FOUND

• cursor_name%ISOPEN

• cursor_name%NOTFOUND

• cursor_name%ROWCOUNT

Cursor Attributes
When cursor attributes are appended to the cursors, they return useful information regarding the
execution of the DML statement. The following are the four cursor attributes:
• cursor_name%FOUND: Returns TRUE if the last fetch returned a row. Returns NULL

before the first fetch from an OPEN cursor. Returns FALSE if the last fetch failed to return
a row.

• cursor_name%ISOPEN: Returns TRUE if the cursor is open, otherwise returns FALSE.
• cursor_name%NOTFOUND: Returns FALSE if the last fetch returned a row. Returns

NULL before the first fetch from an OPEN cursor. Returns TRUE if the last fetch failed to
return a row.

• cursor_name%ROWCOUNT: Returns zero before the first fetch. After every fetch
returns the number of rows fetched so far.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-19

Copyright © 2004, Oracle. All rights reserved.

Cursor FOR Loops

Syntax:

• The cursor FOR loop is a shortcut to process
explicit cursors.

• Implicit open, fetch, exit, and close occur.
• The record is implicitly declared.

FOR record_name IN cursor_name LOOP

statement1;

statement2;

. . .

END LOOP;

Cursor FOR Loops
A cursor FOR loop processes rows in an explicit cursor. It is a shortcut because the cursor is
opened, a row is fetched once for each iteration in the loop, the loop exits when the last row is
processed, and the cursor is closed automatically. The loop itself is terminated automatically at
the end of the iteration where the last row is fetched.
In the syntax:

record_name Is the name of the implicitly declared record
cursor_name Is a PL/SQL identifier for the previously declared cursor

Guidelines
• Do not declare the record that controls the loop because it is declared implicitly.
• Test the cursor attributes during the loop, if required.
• Supply the parameters for a cursor, if required, in parentheses following the cursor name in

the FOR statement.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-20

Copyright © 2004, Oracle. All rights reserved.

Cursor: Example

SET SERVEROUTPUT ON
DECLARE
CURSOR cur_cust IS
SELECT cust_first_name, credit_limit
FROM customers
WHERE credit_limit > 4000;

BEGIN

LOOP
DBMS_OUTPUT.PUT_LINE
(||' '||

);
END LOOP;

END;
/

FOR v_cust_record IN cur_cust

v_cust_record.cust_first_name
v_cust_record.credit_limit

Cursor: Example
The example shows the use of a cursor FOR loop.
The cust_record is the record that is implicitly declared. You can access the fetched data
with this implicit record as shown in the slide. Note that no variables are declared to hold the
fetched data using the INTO clause. The code does not have OPEN and CLOSE statements to
open and close the cursor, respectively.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-21

Copyright © 2004, Oracle. All rights reserved.

Handling Exceptions

• An exception is an error in PL/SQL that is raised
during program execution.

• An exception can be raised:
– Implicitly by the Oracle server
– Explicitly by the program

• An exception can be handled:
– By trapping it with a handler
– By propagating it to the calling environment

Handling Exceptions
An exception is an error in PL/SQL that is raised during the execution of a block. A block
always terminates when PL/SQL raises an exception, but you can specify an exception handler to
perform final actions before the block ends.
Methods for Raising an Exception

• An Oracle error occurs and the associated exception is raised automatically. For example,
if the error ORA-01403 occurs when no rows are retrieved from the database in a
SELECT statement, then PL/SQL raises the NO_DATA_FOUND exception. These errors are
converted into predefined exceptions.

• Depending on the business functionality your program is implementing, you may have to
explicitly raise an exception. You raise an exception explicitly by issuing the RAISE
statement within the block. The exception being raised may be either user-defined or
predefined.

• There are some non-predefined Oracle errors. These errors are any standard Oracle errors
that are not predefined. You can explicitly declare exceptions and associate them with the
non-predefined Oracle errors.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-22

Copyright © 2004, Oracle. All rights reserved.

Handling Exceptions

Exception
raised

Is the
exception
trapped?

yes

Execute statements
in the EXCEPTION

section.

Terminate
gracefully.

no
Terminate
abruptly.

Propagate the
exception.

Handling Exceptions (continued)
Trapping an Exception
Include an EXCEPTION section in your PL/SQL program to trap exceptions. If the exception is
raised in the executable section of the block, processing branches to the corresponding exception
handler in the exception section of the block. If PL/SQL successfully handles the exception, then
the exception does not propagate to the enclosing block or to the calling environment. The
PL/SQL block terminates successfully.
Propagating an Exception
If the exception is raised in the executable section of the block and there is no corresponding
exception handler, the PL/SQL block terminates with failure and the exception is propagated to
an enclosing block or to the calling environment. The calling environment can be any
application, such as SQL*Plus, that invokes the PL/SQL program.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-23

Copyright © 2004, Oracle. All rights reserved.

Exceptions: Example

DECLARE

v_lname VARCHAR2(15);

BEGIN

SELECT cust_last_name INTO v_lname FROM customers

WHERE cust_first_name='Ally';

DBMS_OUTPUT.PUT_LINE ('Ally''s last name is : '
||v_lname);

END;

/

EXCEPTION

WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE (' Your select statement
retrieved multiple rows. Consider using a
cursor.');

Exceptions: Example
You have written PL/SQL blocks with a declarative section (beginning with the keyword
DECLARE) and an executable section (beginning and ending with the keywords BEGIN and
END, respectively). For exception handling, include another optional section called the
EXCEPTION section. This section begins with the keyword EXCEPTION. If present, this is the
last section in a PL/SQL block. Examine the code in the slide to see the EXCEPTION section.
The output of this code is shown below:
Your select statement retrieved multiple rows. Consider using a
cursor.

PL/SQL procedure successfully completed.

When the exception is raised, the control shifts to the EXCEPTION section and all the statements
in the EXCEPTION section are executed. The PL/SQL block terminates with normal, successful
completion.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-24

Copyright © 2004, Oracle. All rights reserved.

Predefined Oracle Server Errors

• Reference the predefined name in the exception-
handling routine.

• Sample predefined exceptions:
– NO_DATA_FOUND

– TOO_MANY_ROWS

– INVALID_CURSOR

– ZERO_DIVIDE

– DUP_VAL_ON_INDEX

Predefined Oracle Server Errors
You can reference predefined Oracle server errors by using its predefined name within the
corresponding exception-handling routine.
For a complete list of predefined exceptions, see PL/SQL User’s Guide and Reference.
Note: PL/SQL declares predefined exceptions in the STANDARD package.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-25

Predefined Oracle Server Errors (continued)

Exception Name Oracle Server
Error
Number

Description

ACCESS_INTO_NULL ORA-06530 Attempted to assign values to the
attributes of an uninitialized object

CASE_NOT_FOUND ORA-06592 None of the choices in the WHEN
clauses of a CASE statement is
selected, and there is no ELSE clause.

COLLECTION_IS_NULL ORA-06531 Attempted to apply collection methods
other than EXISTS to an uninitialized
nested table or varray

CURSOR_ALREADY_OPEN ORA-06511 Attempted to open an already open
cursor

DUP_VAL_ON_INDEX ORA-00001 Attempted to insert a duplicate value

INVALID_CURSOR ORA-01001 Illegal cursor operation occurred

INVALID_NUMBER ORA-01722 Conversion of character string to
number fails

LOGIN_DENIED ORA-01017 Logging on to the Oracle server with
an invalid username or password

NO_DATA_FOUND ORA-01403 Single-row SELECT returned no data

NOT_LOGGED_ON ORA-01012 PL/SQL program issues a database
call without being connected to the
Oracle server

PROGRAM_ERROR ORA-06501 PL/SQL has an internal problem

ROWTYPE_MISMATCH ORA-06504 Host cursor variable and PL/SQL
cursor variable involved in an
assignment have incompatible return
types

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-26

Predefined Oracle Server Errors (continued)

Exception Name Oracle Server
Error
Number

Description

STORAGE_ERROR ORA-06500 PL/SQL ran out of memory or memory is
corrupted.

SUBSCRIPT_BEYOND_COUNT ORA-06533 Referenced a nested table or varray element
by using an index number larger than the
number of elements in the collection

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 Referenced a nested table or varray element
by using an index number that is outside the
legal range (for example –1)

SYS_INVALID_ROWID ORA-01410 The conversion of a character string into a
universal ROWID fails because the character
string does not represent a valid ROWID.

TIMEOUT_ON_RESOURCE ORA-00051 Time-out occurred while the Oracle server
was waiting for a resource.

TOO_MANY_ROWS ORA-01422 Single-row SELECT returned more than one
row.

VALUE_ERROR ORA-06502 Arithmetic, conversion, truncation, or size-
constraint error occurred.

ZERO_DIVIDE ORA-01476 Attempted to divide by zero

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-27

Copyright © 2004, Oracle. All rights reserved.

Trapping Non-Predefined Oracle
Server Errors

Declarative section

Declare

Name the
exception

Code PRAGMA
EXCEPTION_INIT

EXCEPTION section

Handle the raised
exception

Associate Reference

Trapping Non-Predefined Oracle Server Errors
Non-predefined exceptions are similar to predefined exceptions; however, they are not defined as
PL/SQL exceptions in the Oracle server. They are standard Oracle errors. You can create
exceptions with standard Oracle errors by using the PRAGMA EXCEPTION_INIT function.
Such exceptions are called non-predefined exceptions.
You can trap a non-predefined Oracle server error by declaring it first. The declared exception is
raised implicitly. In PL/SQL, PRAGMA EXCEPTION_INIT instructs the compiler to associate
an exception name with an Oracle error number. That allows you to refer to any internal
exception by name and to write a specific handler for it.
Note: PRAGMA (also called pseudoinstructions) is the keyword that signifies that the statement is
a compiler directive, which is not processed when the PL/SQL block is executed. Rather, it
directs the PL/SQL compiler to interpret all occurrences of the exception name within the block
as the associated Oracle server error number.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-28

Copyright © 2004, Oracle. All rights reserved.

Trapping User-Defined Exceptions

Declarative
section

Executable
section

Exception-handling
section

Declare Raise Reference

Name the
exception.

Explicitly raise
the exception by
using the RAISE

statement.

Handle the raised
exception.

Trapping User-Defined Exceptions
With PL/SQL, you can define your own exceptions. You define exceptions depending on the
requirements of your application. For example, you may prompt the user to enter a department
number.
Define an exception to deal with error conditions in the input data. Check whether the
department number exists. If it does not, then you may have to raise the user-defined exception.
PL/SQL exceptions must be:

• Declared in the declarative section of a PL/SQL block
• Raised explicitly with RAISE statements
• Handled in the EXCEPTION section

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-29

Copyright © 2004, Oracle. All rights reserved.

The RAISE_APPLICATION_ERROR
Procedure

Syntax:

• You can use this procedure to issue user-defined
error messages from stored subprograms.

• You can report errors to your application and
avoid returning unhandled exceptions.

raise_application_error (error_number,
message[, {TRUE | FALSE}]);

The RAISE_APPLICATION_ERROR Procedure
Use the RAISE_APPLICATION_ERROR procedure to communicate a predefined exception
interactively by returning a nonstandard error code and error message. With
RAISE_APPLICATION_ERROR, you can report errors to your application and avoid returning
unhandled exceptions.
In the syntax:

error_number

Is a user-specified number for the exception between –20,000
and –20,999

message

Is the user-specified message for the exception. It is a character
string up to 2,048 bytes long.

TRUE | FALSE

Is an optional Boolean parameter. (If TRUE, the error is placed
on the stack of previous errors. If FALSE, the default, the error
replaces all previous errors.)

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-30

Copyright © 2004, Oracle. All rights reserved.

The RAISE_APPLICATION_ERROR
Procedure

• Is used in two different places:
– Executable section
– Exception section

• Returns error conditions to the user in a manner
consistent with other Oracle server errors.

The RAISE_APPLICATION_ERROR Procedure (continued)
The RAISE_APPLICATION_ERROR can be used in either the executable section or the
exception section of a PL/SQL program, or both. The returned error is consistent with how the
Oracle server produces a predefined, non-predefined, or user-defined error. The error number
and message are displayed to the user.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-31

Copyright © 2004, Oracle. All rights reserved.

Dependencies

Table

View

Database trigger

Procedure

Function

Package body

Package specification

User-defined object
and collection types

Function

Package specification

Procedure

Sequence

Synonym

Table

View

User-defined object
and collection types

Referenced objectsDependent objects

Dependent and Referenced Objects
Some objects reference other objects as part of their definitions. For example, a stored procedure
could contain a SELECT statement that selects columns from a table. For this reason, the stored
procedure is called a dependent object, whereas the table is called a referenced object.
Dependency Issues
If you alter the definition of a referenced object, dependent objects may or may not continue to
work properly. For example, if the table definition is changed, procedure may or may not
continue to work without an error.
The Oracle server automatically records dependencies among objects. To manage dependencies,
all schema objects have a status (valid or invalid) that is recorded in the data dictionary, and you
can view the status in the USER_OBJECTS data dictionary view.

Status Significance

VALID The schema object has been compiled and can be immediately used when
referenced.

INVALID The schema object must be compiled before it can be used.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-32

Copyright © 2004, Oracle. All rights reserved.

Dependencies

View or
procedure

Direct
dependency

Referenced

Indirect
dependency

Direct
dependency

Dependent

Table

Referenced

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure

Dependent

Dependent and Referenced Objects (continued)
A procedure or function can directly or indirectly (through an intermediate view, procedure,
function, or packaged procedure or function) reference the following objects:

• Tables
• Views
• Sequences
• Procedures
• Functions
• Packaged procedures or functions

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-33

Copyright © 2004, Oracle. All rights reserved.

Displaying Direct and Indirect
Dependencies

1. Run the utldtree.sql script to create the
objects that enable you to display the direct and
indirect dependencies.

2. Execute the DEPTREE_FILL procedure:

EXECUTE deptree_fill('TABLE','OE','CUSTOMERS')

Displaying Direct and Indirect Dependencies by Using Views
Display direct and indirect dependencies from additional user views called DEPTREE and
IDEPTREE; these views are provided by the Oracle database.
Example

1. Make sure that the utldtree.sql script has been executed. This script is located in the
$ORACLE_HOME/rdbms/admin folder.

2. Populate the DEPTREE_TEMPTAB table with information for a particular referenced
object by invoking the DEPTREE_FILL procedure. There are three parameters for this
procedure:

object_type Type of the referenced object

object_owner Schema of the referenced object

object_name Name of the referenced object

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-34

Copyright © 2004, Oracle. All rights reserved.

Using Oracle-Supplied Packages

Oracle-supplied packages:
• Are provided with the Oracle server
• Extend the functionality of the database
• Enable access to certain SQL features that are

normally restricted for PL/SQL
For example, the DBMS_OUTPUT package was originally
designed to debug PL/SQL programs.

Using Oracle-Supplied Packages
Packages are provided with the Oracle server to allow either of the following:

• PL/SQL access to certain SQL features
• The extension of the functionality of the database

You can use the functionality provided by these packages when creating your application, or you
may simply want to use these packages as ideas when you create your own stored procedures.
Most of the standard packages are created by running catproc.sql.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-35

Copyright © 2004, Oracle. All rights reserved.

Some of the Oracle Supplied Packages

Here is an abbreviated list of some Oracle-supplied
packages:
• DBMS_ALERT

• DBMS_LOCK

• DBMS_SESSION

• DBMS_OUTPUT

• HTP

• UTL_FILE

• UTL_MAIL

• DBMS_SCHEDULER

List of Some of the Oracle Supplied Packages
The list of PL/SQL packages provided with an Oracle database grows with the release of new
versions. It would be impossible to cover the exhaustive set of packages and their functionality
in this course. For more information, refer to PL/SQL Packages and Types Reference 10g manual
(previously known as the PL/SQL Supplied Packages Reference).
The following is a brief description of some listed packages:

• The DBMS_ALERT package supports asynchronous notification of database events.
Messages or alerts are sent on a COMMIT command.

• The DBMS_LOCK package is used to request, convert, and release locks through Oracle
Lock Management services.

• The DBMS_SESSION package enables programmatic use of the ALTER SESSION SQL
statement and other session-level commands.

• The DBMS_OUTPUT package provides debugging and buffering of text data.
• The HTP package writes HTML-tagged data into database buffers.
• The UTL_FILE package enables reading and writing of operating system text files.
• The UTL_MAIL package enables composing and sending of e-mail messages.
• The DBMS_SCHEDULER package enables scheduling and automated execution of PL/SQL

blocks, stored procedures, and external procedures or executables.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-36

Copyright © 2004, Oracle. All rights reserved.

DBMS_OUTPUT Package

The DBMS_OUTPUT package enables you to send
messages from stored subprograms and triggers.
• PUT and PUT_LINE place text in the buffer.
• GET_LINE and GET_LINES read the buffer.
• Use SET SERVEROUTPUT ON to display messages

in SQL*Plus.

PUT_LINE

GET_LINE

PUT
NEW_LINE

GET_LINES

SET SERVEROUT ON [SIZE n]
EXEC proc Buffer

Output

DBMS_OUTPUT Package
The DBMS_OUTPUT package sends textual messages from any PL/SQL block into a buffer in
the database. The procedures provided by the package include:
• PUT to append text from the procedure to the current line of the line output buffer
• NEW_LINE to place an end-of-line marker in the output buffer
• PUT_LINE to combine the action of PUT and NEW_LINE; to trim leading spaces
• GET_LINE to retrieve the current line from the buffer into a procedure variable
• GET_LINES to retrieve an array of lines into a procedure-array variable
• ENABLE/DISABLE to enable or disable calls to the DBMS_OUTPUT procedures

The buffer size can be set by using:
• The SIZE n option appended to the SET SERVEROUTPUT ON command, where n is

between 2,000 (the default) and 1,000,000 (1 million characters)
• An integer parameter between 2,000 and 1,000,000 in the ENABLE procedure

Practical Uses
• You can output results to the window for debugging purposes.
• You can trace the code execution path for a function or procedure.
• You can send messages between subprograms and triggers.

Note: There is no mechanism to flush output during the execution of a procedure.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-37

Copyright © 2004, Oracle. All rights reserved.

UTL_FILE Package

The UTL_FILE package extends PL/SQL programs to
read and write operating system text files. UTL_FILE:
• Provides a restricted version of operating system

stream file I/O for text files
• Can access files in operating system directories

defined by a CREATE DIRECTORY statement. You
can also use the utl_file_dir database
parameter.

EXEC proc

O/S fileUTL_FILE

CREATE DIRECTORY
my_dir AS '/dir'

UTL_FILE Package
The Oracle-supplied UTL_FILE package is used to access text files in the operating system of
the database server. The database provides read and write access to specific operating system
directories by using:

• A CREATE DIRECTORY statement that associates an alias with an operating system
directory. The database directory alias can be granted the READ and WRITE privileges to
control the type of access to files in the operating system. For example:

CREATE DIRECTORY my_dir AS '/temp/my_files';
GRANT READ, WRITE ON DIRECTORY my_dir TO public;

• The paths specified in the utl_file_dir database initialization parameter
The preferred approach is to use the directory alias created by the CREATE DIRECTORY
statement, which does not require the database to be restarted. The operating system directories
specified by using either of these techniques should be accessible to and on the same machine as
the database server processes. The path (directory) names may be case sensitive for some
operating systems.
Note: The DBMS_LOB package can be used to read binary files on the operating system.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-38

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Identify a PL/SQL block
• Create subprograms
• List restrictions and guidelines on calling

functions from SQL expressions
• Use cursors
• Handle exceptions
• Use the raise_application_error procedure
• Identify Oracle-supplied packages

Summary
This lesson reviewed some basic PL/SQL concepts such as:

• PL/SQL block structure
• Subprograms
• Cursors
• Exceptions
• Oracle-supplied packages

The quiz on the following pages is designed to test and review your PL/SQL knowledge. This
knowledge is necessary as a base line for the subsequent chapters to build upon.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-39

Practice 1: PL/SQL Knowledge Quiz
The questions are designed as a refresher. Use the space provided for your answers. If you do not
know the answer, go on to the next question. For solutions to this quiz, see Appendix A.
PL/SQL Basics

1. What are the four key areas of the basic PL/SQL block? What happens in each area?

2. What is a variable and where is it declared?

3. What is a constant and where is it declared?

4. What are the different modes for parameters and what does each mode do?

5. How does a function differ from a procedure?

6. What are the two main components of a PL/SQL package?

a. In what order are they defined?

b. Are both required?

7. How does the syntax of a SELECT statement used within a PL/SQL block differ from a
SELECT statement issued in SQL*Plus?

8. What is a record?

9. What is an index-by table?

10. How are loops implemented in PL/SQL?

11. How is branching logic implemented in PL/SQL?

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-40

Practice 1: PL/SQL Knowledge Quiz (continued)
Cursor Basics

12. What is an explicit cursor?

13. Where do you define an explicit cursor?

14. Name the five steps for using an explicit cursor.

15. What is the syntax used to declare a cursor?

16. What does the FOR UPDATE clause do within a cursor definition?

17. What command opens an explicit cursor?

18. What command closes an explicit cursor?

19. Name five implicit actions that a cursor FOR loop provides.

20. Describe what the following cursor attributes do:
- cursor_name%ISOPEN
- cursor_name%FOUND
- cursor_name%NOTFOUND
- cursor_name%ROWCOUNT

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-41

Practice 1: PL/SQL Knowledge Quiz (continued)
Exceptions

21. An exception occurs in your PL/SQL block, which is enclosed in another PL/SQL block.
What happens to this exception?

22. An exception handler is mandatory within a PL/SQL subprogram. (True/False)

23. What syntax do you use in the exception handler area of a subprogram?

24. How do you code for a NO_DATA_FOUND error?

25. Name three types of exceptions.

26. To associate an exception identifier with an Oracle error code, what pragma do you use and
where?

27. How do you explicitly raise an exception?

28. What types of exceptions are implicitly raised?

29. What does the raise_application_error procedure do?
ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 1-42

Practice 1: PL/SQL Knowledge Quiz (continued)
Dependencies

30. Which objects can a procedure or function directly reference?

31. What are the two statuses that a schema object can have and where are they recorded?

32. The Oracle server automatically recompiles invalid procedures when they are called from
the same ______. To avoid compile problems with remote database calls, you can use the
________ model instead of the timestamp model.

33. What data dictionary contains information on direct dependencies?

34. What script do you run to create the views deptree and ideptree?

35. What does the deptree_fill procedure do and what are the arguments that you need to
provide?

Oracle-Supplied Packages
36. What does the dbms_output package do?

37. How do you write “This procedure works.” from within a PL/SQL program by using the
dbms_output?

38. What does dbms_sql do and how does this compare with Native Dynamic SQL?ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

Design Considerations

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-2

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Identify guidelines for cursor design
• Use cursor variables
• Create subtypes based on existing types for an

application

Objectives
This lesson discusses several concepts that apply to the designing of PL/SQL program units. This
lesson explains how to:

• Design and use cursor variables
• Describe the predefined data types
• Create subtypes based on existing data types for an application

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-3

Copyright © 2004, Oracle. All rights reserved.

Guidelines for Cursor Design

Fetch into a record when fetching from a cursor.
DECLARE

CURSOR cur_cust IS

SELECT customer_id, cust_last_name, cust_email

FROM customers

WHERE credit_limit = 1200;

v_cust_record cur_cust%ROWTYPE;

BEGIN

OPEN cur_cust;

LOOP

FETCH cur_cust INTO v_cust_record;

...

Guidelines for Cursor Design
When fetching from a cursor, fetch into a record. This way you do not need to declare individual
variables, and you reference only the values you want to use. Additionally, you can
automatically use the structure of the SELECT column list.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-4

Copyright © 2004, Oracle. All rights reserved.

Guidelines for Cursor Design

Create cursors with parameters.
CREATE OR REPLACE PROCEDURE cust_pack
(p_crd_limit_in NUMBER, p_acct_mgr_in NUMBER)

IS
v_credit_limit NUMBER := 1500;
CURSOR cur_cust

(p_crd_limit NUMBER, p_acct_mgr NUMBER)
IS
SELECT customer_id, cust_last_name, cust_email
FROM customers
WHERE credit_limit = p_crd_limit
AND account_mgr_id = p_acct_mgr;

cust_record cur_cust%ROWTYPE;
BEGIN

OPEN cur_cust(p_crd_limit_in, p_acct_mgr_in);
...

CLOSE cur_cust;
...

OPEN cur_cust(v_credit_limit, 145);
...
END;

Guidelines for Cursor Design (continued)
Whenever you have a need to use a cursor in more than one place with different values for the
WHERE clause, create parameters for your cursor. Parameters increase the flexibility and
reusability of cursors, because you can pass different values to the WHERE clause when you open
a cursor, rather than hard-code a value for the WHERE clause.
Additionally, parameters help you avoid scoping problems, because the result set for the cursor
is not tied to a specific variable in a program. You can define a cursor at a higher level and use it
in any subblock with variables defined in the local block.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-5

Copyright © 2004, Oracle. All rights reserved.

Guidelines for Cursor Design

Reference implicit cursor attributes immediately after
the SQL statement executes.

BEGIN

UPDATE customers

SET credit_limit = p_credit_limit

WHERE customer_id = p_cust_id;

get_avg_order(p_cust_id); -- procedure call

IF SQL%NOTFOUND THEN

...

Guidelines for Cursor Design (continued)
If you are using an implicit cursor and reference a SQL cursor attribute, make sure you reference
it immediately after a SQL statement is executed. This is because SQL cursor attributes are set
on the result of the most recently executed SQL statement. The SQL statement can be executed
in another program. Referencing a SQL cursor attribute immediately after a SQL statement
executes ensures that you are dealing with the result of the correct SQL statement.
In the example in the slide, you cannot rely on the value of SQL%NOTFOUND for the UPDATE
statement, because it is likely to be overwritten by the value of another SQL statement in the
get_avg_order procedure. To ensure accuracy, the cursor attribute function
SQL%NOTFOUND needs to be called immediately after the DML statement:

DECLARE
v_flag BOOLEAN;

BEGIN
UPDATE customers

SET credit_limit = p_credit_limit
WHERE customer_id = p_cust_id;
v_flag := SQL%NOTFOUND

get_avg_order(p_cust_id); -- procedure call
IF v_flag THEN

...

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-6

Copyright © 2004, Oracle. All rights reserved.

Guidelines for Cursor Design

Simplify coding with cursor FOR loops.
CREATE OR REPLACE PROCEDURE cust_pack
(p_crd_limit_in NUMBER, p_acct_mgr_in NUMBER)

IS
v_credit_limit NUMBER := 1500;
CURSOR cur_cust

(p_crd_limit NUMBER, p_acct_mgr NUMBER)
IS
SELECT customer_id, cust_last_name, cust_email
FROM customers
WHERE credit_limit = p_crd_limit
AND account_mgr_id = p_acct_mgr;

cust_record cur_cust%ROWTYPE;
BEGIN

FOR cust_record IN cur_cust
(p_crd_limit_in, p_acct_mgr_in)

LOOP -- implicit open and fetch
...
END LOOP; -- implicit close
...

END;

Guidelines for Cursor Design (continued)
Whenever possible, use cursor FOR loops that simplify coding. Cursor FOR loops reduce the
volume of code you need to write to fetch data from a cursor and also reduce the chances of
introducing loop errors in your code.
A cursor FOR loop automatically handles the open, fetch, and close operations, as well as,
defines a record type that matches the cursor definition. After it processes the last row the cursor
is closed automatically. If you do not use a CURSOR FOR loop, forgetting to close your cursor
results in increased memory usage.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-7

Copyright © 2004, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE cust_list
IS
CURSOR cur_cust IS
SELECT customer_id, cust_last_name, credit_limit*1.1
FROM customers;

cust_record cur_cust%ROWTYPE;
BEGIN

OPEN cur_cust;
LOOP
FETCH cur_cust INTO cust_record;
DBMS_OUTPUT.PUT_LINE('Customer ' ||

cust_record.cust_last_name || ' wants credit '
|| cust_record.(credit_limit * 1.1));

EXIT WHEN cur_cust%NOTFOUND;
END LOOP;

...

Guidelines for Cursor Design

• Close a cursor when it is no longer needed.
• Use column aliases in cursors for calculated

columns fetched into records declared with
%ROWTYPE.

Use col. alias

Guidelines for Cursor Design (continued)
• If you do not need a cursor any longer, close it explicitly. If your cursor is in a package, its

scope is not limited to any particular PL/SQL block. The cursor remains open until you
explicitly close it. An open cursor takes up memory space and continues to maintain row-
level locks, if created with the FOR UPDATE clause, until a commit or rollback. Closing
the cursor releases memory. Ending the transaction by committing or rolling back releases
the locks. Along with a FOR UPDATE clause you can also use a WHERE CURRENT OF
clause with the DML statements inside the FOR loop. This automatically performs a DML
transaction for the current row in the cursor’s result set, thereby improving performance.
Note: It is a good programming practice to explicitly close your cursors. Leaving cursors
open can generate an exception because the number of cursors allowed to remain open
within a session is limited.

• Make sure that you use column aliases in your cursor for calculated columns that you fetch
into a record declared with a %ROWTYPE declaration. You also need column aliases if you
want to reference the calculated column in your program.
The code in the slide does not compile successfully because it lacks a column alias for the
calculation credit_limit*1.1. After you give it an alias, use the same alias later in
the code to make a reference to the calculation.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-8

Copyright © 2004, Oracle. All rights reserved.

1 Southlake, Texas 1400

2 San Francisco 1500

3 New Jersey 1600

4 Seattle, Washington 1700

5 Toronto 1800

Memory

Cursor Variables

REF
CURSOR
memory
locator

Cursor Variables: Overview
Like a cursor, a cursor variable points to the current row in the result set of a multirow query.
Cursor variables, however, are like C pointers: they hold the memory location of an item instead
of the item itself. In this way, cursor variables differ from cursors the way constants differ from
variables. A cursor is static, a cursor variable is dynamic. In PL/SQL, a cursor variable has a
REF CURSOR data type, where REF stands for reference, and CURSOR stands for the class of the
object.
Using Cursor Variables
To execute a multirow query, the Oracle server opens a work area called a “cursor” to store
processing information. To access the information, you either explicitly name the work area, or
you use a cursor variable that points to the work area. Whereas a cursor always refers to the same
work area, a cursor variable can refer to different work areas. Therefore, cursors and cursor
variables are not interoperable.
An explicit cursor is static and is associated with one SQL statement. A cursor variable can be
associated with different statements at run time.
Primarily you use a cursor variable to pass a pointer to query result sets between PL/SQL stored
subprograms and various clients such as a Developer Forms application. None of them owns the
result set. They simply share a pointer to the query work area that stores the result set.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-9

Copyright © 2004, Oracle. All rights reserved.

Using a Cursor Variable

Define and
declare the
cursor
variable.

Open the
cursor
variable.

Fetch rows
from the
result set.

Close the
cursor
variable.

1 2 3 4

Working with Cursor Variables
There are four steps for handling a cursor variable. The next few sections contain detailed
information about each step.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-10

Copyright © 2004, Oracle. All rights reserved.

Strong Versus Weak Cursors

• Strong cursor:
– Is restrictive
– Specifies a RETURN type
– Associates with type-compatible queries only
– Is less error prone

• Weak cursor:
– Is nonrestrictive
– Associates with any query
– Is very flexible

Strong Versus Weak Cursor Variables
REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). A strong REF CURSOR
type definition specifies a return type, a weak definition does not. PL/SQL enables you to
associate a strong type with type-compatible queries only, whereas a weak type can be associated
with any query. This makes strong REF CURSOR types less error prone, but weak REF
CURSOR types more flexible.
In the following example, the first definition is strong, whereas the second is said to be weak:

DECLARE
TYPE rt_cust IS REF CURSOR RETURN customers%ROWTYPE;
TYPE rt_general_purpose IS REF CURSOR;
...

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-11

Copyright © 2004, Oracle. All rights reserved.

DECLARE
TYPE rt_cust IS REF CURSOR

RETURN customers%ROWTYPE;
...

Define a REF CURSOR type:

• ref_type_name is a type specifier in subsequent
declarations.

• return_type represents a record type.
• return_type indicates a strong cursor.

TYPE ref_type_name IS REF CURSOR
[RETURN return_type];

Step 1: Defining a REF CURSOR Type

Step 1: Defining a Cursor Variable
To create a cursor variable, you first need to define a REF CURSOR type and then declare a
variable of that type.
Defining the REF CURSOR type:

TYPE ref_type_name IS REF CURSOR [RETURN return_type];

where: ref_type_name a type specified in subsequent declarations
return_type represents a row in a database table

The REF keyword indicates that the new type is to be a pointer to the defined type. The
return_type is a record type indicating the types of the select list that are eventually returned
by the cursor variable. The return type must be a record type.
Example

DECLARE
TYPE rt_cust IS REF CURSOR RETURN customers%ROWTYPE;
...

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-12

Copyright © 2004, Oracle. All rights reserved.

Declare a cursor variable of a cursor type:

• cursor_variable_name is the name of the cursor
variable.

• ref_type_name is the name of a REF CURSOR type.

DECLARE

TYPE rt_cust IS REF CURSOR

RETURN customers%ROWTYPE;

cv_cust rt_cust;

CURSOR_VARIABLE_NAME REF_TYPE_NAME

Step 1: Declaring a Cursor Variable

Declaring a Cursor Variable
After the cursor type is defined, declare a cursor variable of that type.

cursor_variable_name ref_type_name;

where: cursor_variable_name is the name of the cursor variable
ref_type_name is the name of the REF CURSOR type

Cursor variables follow the same scoping and instantiation rules as all other PL/SQL variables.
In the following example, you declare the cursor variable cv_cust.
Step 1:

DECLARE
TYPE ct_cust IS REF CURSOR RETURN customers%ROWTYPE;
cv_cust rt_cust;

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-13

Copyright © 2004, Oracle. All rights reserved.

Step 1: Declaring a REF CURSOR
Return Type

Options:
• Use %TYPE and %ROWTYPE.
• Specify a user-defined record in the RETURN

clause.
• Declare the cursor variable as the formal

parameter of a stored procedure or function.

Step 1: Declaring a REF CURSOR Return Type
The following are some more examples of cursor variable declarations:

• Use %TYPE and %ROWTYPE to provide the data type of a record variable:
DECLARE
cust_rec customers%ROWTYPE; --a recd variable based on a row
TYPE rt_cust IS REF CURSOR RETURN cust_rec%TYPE;
cv_cust rt_cust; --cursor variable

• Specify a user-defined record in the RETURN clause:
DECLARE

TYPE cust_rec_typ IS RECORD
(custno NUMBER(4),
custname VARCHAR2(10),
credit NUMBER(7,2));

TYPE rt_cust IS REF CURSOR RETURN cust_rec_typ;
cv_cust rt_cust;

• Declare a cursor variable as the formal parameter of a stored procedure or function:
DECLARE

TYPE rt_cust IS REF CURSOR RETURN customers%ROWTYPE;
PROCEDURE use_cust_cur_var(cv_cust IN OUT rt_cust)
IS ...

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-14

Copyright © 2004, Oracle. All rights reserved.

Step 2: Opening a Cursor Variable

• Associate a cursor variable with a multirow
SELECT statement.

• Execute the query.
• Identify the result set:

– cursor_variable_name is the name of the
cursor variable.

– select_statement is the SQL SELECT statement.

OPEN cursor_variable_name

FOR select_statement

Step 2: Opening a Cursor Variable
Other OPEN-FOR statements can open the same cursor variable for different queries. You do not
need to close a cursor variable before reopening it. You must note that when you reopen a cursor
variable for a different query, the previous query is lost.
In the following example, the packaged procedure declares a variable used to select one of
several alternatives in an IF THEN ELSE statement. When called, the procedure opens the
cursor variable for the chosen query.

CREATE OR REPLACE PACKAGE cust_data
IS

TYPE rt_cust IS REF CURSOR RETURN customers%ROWTYPE;
PROCEDURE open_cust_cur_var(cv_cust IN OUT rt_cust,

p_your_choice IN NUMBER);
END cust_data;
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-15

Step 2: Opening a Cursor Variable (continued)
CREATE OR REPLACE PACKAGE BODY cust_data
IS

PROCEDURE open_cust_cur_var(cv_cust IN OUT rt_cust,
p_your_choice IN NUMBER)

IS
BEGIN

IF p_your_choice = 1 THEN
OPEN cv_cust FOR SELECT * FROM customers;

ELSIF p_your_choice = 2 THEN
OPEN cv_cust FOR SELECT * FROM customers

WHERE credit_limit > 3000;
ELSIF p_your_choice = 3 THEN

...
END IF;

END open_cust_cur_var;
END cust_data;
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-16

Copyright © 2004, Oracle. All rights reserved.

• Retrieve rows from the result set one at a time.

• The return type of the cursor variable must be
compatible with the variables named in the INTO
clause of the FETCH statement.

FETCH cursor_variable_name

INTO variable_name1

[,variable_name2,. . .]

| record_name;

Step 3: Fetching from a Cursor Variable

Step 3: Fetching from a Cursor Variable
The FETCH statement retrieves rows from the result set one at a time. PL/SQL verifies that the
return type of the cursor variable is compatible with the INTO clause of the FETCH statement.
For each query column value returned, there must be a type-compatible variable in the INTO
clause. Also, the number of query column values must equal the number of variables. In case of
a mismatch in number or type, the error occurs at compile time for strongly typed cursor
variables and at run time for weakly typed cursor variables.
Note: When you declare a cursor variable as the formal parameter of a subprogram that fetches
from a cursor variable, you must specify the IN (or IN OUT) mode. If the subprogram also
opens the cursor variable, you must specify the IN OUT mode.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-17

Copyright © 2004, Oracle. All rights reserved.

• Disable a cursor variable.
• The result set is undefined.

• Accessing the cursor variable after it is closed
raises the predefined exception INVALID_CURSOR.

CLOSE cursor_variable_name ;

Step 4: Closing a Cursor Variable

Step 4: Closing a Cursor Variable
The CLOSE statement disables a cursor variable. After that the result set is undefined. The
syntax is:

CLOSE cursor_variable_name;

In the following example, the cursor is closed when the last row is processed.
...

LOOP
FETCH cv_cust INTO cust_rec;
EXIT WHEN cv_cust%NOTFOUND;
...

END LOOP;
CLOSE cv_cust;

...

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-18

Copyright © 2004, Oracle. All rights reserved.

Passing Cursor Variables as Arguments

You can pass query result sets among PL/SQL stored
subprograms and various clients.

Pointer
to the
result

set

Access by a host variable
on the client side

Passing Query Result Sets
Cursor variables are very useful for passing query result sets between PL/SQL stored
subprograms and various clients. Neither PL/SQL nor any of its clients owns a result set; they
simply share a pointer to the query work area that identifies the result set. For example, an
Oracle Call Interface (OCI) client, or an Oracle Forms application, or the Oracle server can all
refer to the same work area. This might be useful in Oracle Forms, for instance, when you want
to populate a multiblock form.
Example
Using SQL*Plus, define a host variable with a data type of REFCURSOR to hold the query
results generated from a REF CURSOR in a stored subprogram. Use the SQL*Plus PRINT
command to view the host variable results. Optionally, you can set the SQL*Plus command SET
AUTOPRINT ON to display the query results automatically.

SQL> VARIABLE cv REFCURSOR

Next, create a subprogram that uses a REF CURSOR to pass the cursor variable data back to the
SQL*Plus environment.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-19

Copyright © 2004, Oracle. All rights reserved.

SQL> EXECUTE cust_data.get_cust(112, :cv)

PL/SQL procedure successfully completed.

SQL> print cv

Passing Cursor Variables as Arguments

Passing Query Result Sets (continued)
CREATE OR REPLACE PACKAGE cust_data AS
TYPE typ_cust_rec IS RECORD

(cust_id NUMBER(6), custname VARCHAR2(20),
credit NUMBER(9,2), cust_email VARCHAR2(30));

TYPE rt_cust IS REF CURSOR RETURN typ_cust_rec;
PROCEDURE get_cust
(p_custid IN NUMBER, p_cv_cust IN OUT rt_cust);
END;
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-20

Passing Query Result Sets (continued)
CREATE OR REPLACE PACKAGE BODY cust_data AS
PROCEDURE get_cust

(p_custid IN NUMBER, p_cv_cust IN OUT rt_cust)
IS
BEGIN

OPEN p_cv_cust FOR
SELECT customer_id, cust_first_name, credit_limit, cust_email

FROM customers
WHERE customer_id = p_custid;

-- CLOSE p_cv_cust
END;
END;
/

Note that the CLOSE p_cv_cust statement is commented. This is done because if you close
the REF cursor, it is not accessible from the host variable.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-21

Copyright © 2004, Oracle. All rights reserved.

Rules for Cursor Variables

• Cursor variables cannot be used with remote
subprograms on another server.

• The query associated with a cursor variable in an
OPEN-FOR statement should not be FOR UPDATE.

• You cannot use comparison operators to test
cursor variables.

• Cursor variables cannot be assigned a null value.
• You cannot use REF CURSOR types in CREATE

TABLE or VIEW statements.
• Cursors and cursor variables are not

interoperable.

Restrictions
• Remote subprograms on another server cannot accept the values of cursor variables.

Therefore, you cannot use remote procedure calls (RPCs) to pass cursor variables from one
server to another.

• If you pass a host cursor variable to PL/SQL, you cannot fetch from it on the server side
unless you open it in the server on the same server call.

• The query associated with a cursor variable in an OPEN-FOR statement should not be FOR
UPDATE.

• You cannot use comparison operators to test cursor variables for equality, inequality, or
nullity.

• You cannot assign NULLs to a cursor variable.
• You cannot use REF CURSOR types to specify column types in a CREATE TABLE or

CREATE VIEW statement. So, database columns cannot store the values of cursor
variables.

• You cannot use a REF CURSOR type to specify the element type of a collection, which
means that elements in an index-by table, nested table, or VARRAY cannot store the values
of cursor variables.

• Cursors and cursor variables are not interoperable; that is, you cannot use one where the
other is expected.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-22

Copyright © 2004, Oracle. All rights reserved.

Comparing Cursor Variables
with Static Cursors

Cursor variables have the following benefits:
• Are dynamic and ensure more flexibility
• Are not tied to a single SELECT statement
• Hold the value of a pointer
• Can reduce network traffic
• Give access to query work area after a

block completes

Comparing Cursor Variables with Static Cursors
Cursor variables are dynamic and provide wider flexibility. Unlike static cursors, cursor
variables are not tied to a single SELECT statement. In applications where the SELECT
statement may differ depending on different situations, cursor variables can be opened for the
different SELECT statement. Because cursor variables hold the value of a pointer, they can be
easily passed between programs, no matter where the programs exist.
Cursor variables can reduce network traffic by grouping OPEN FOR statements and sending
them across the network only once. For example, the following PL/SQL block opens two cursor
variables in a single round trip:

/* anonymous PL/SQL block in host environment */
BEGIN

OPEN :cv_cust FOR SELECT * FROM customers;
OPEN :cv_orders FOR SELECT * FROM orders;

END;

This may be useful in Oracle Forms, for instance, when you want to populate a multiblock form.
When you pass host cursor variables to a PL/SQL block for opening, the query work areas to
which they point remain accessible after the block completes. That enables your OCI or Pro*C
program to use these work areas for ordinary cursor operations.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-23

Copyright © 2004, Oracle. All rights reserved.

Predefined Data Types
Scalar Types

BINARY_DOUBLE
BINARY_FLOAT
BINARY_INTEGER
DEC
DECIMAL
DOUBLE_ PRECISION
FLOAT
INT
INTEGER
NATURAL
NATURALN
NUMBER
NUMERIC
PLS_INTEGER
POSITIVE
POSITIVEN
REAL
SINGTYPE
SMALLINT

CHAR
CHARACTER
LONG
LONG RAW
NCHAR
NVARCHAR2
RAW
ROWID
STRING
UROWID
VARCHAR
VARCHAR2

Composite Types
RECORD
TABLE
VARRAY

Reference Types
REF CURSOR
REF object_type

LOB Types
BFILE
BLOB
CLOB
NCLOB

BOOLEAN

DATE

PL/SQL Data Types
Every constant, variable, and parameter has a data type, which specifies a storage format,
constraints, and a valid range of values. PL/SQL provides a variety of predefined data types. For
instance, you can choose from integer, floating point, character, Boolean, date, collection,
reference, and LOB types. In addition, PL/SQL enables you to define your own subtypes.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-24

Copyright © 2004, Oracle. All rights reserved.

Subtypes

A subtype is a subset of an existing data type that may
place a constraint on its base type.

PL/SQL-predefined

User-defined Scalar
data type

Subtype

Definition of Subtypes
A subtype is a data type based on an existing data type. It does not define a new data type,
instead it places a constraint on an existing data type. There are several predefined subsets
specified in the standard package. DECIMAL and INTEGER are subtypes of NUMBER.
CHARACTER is a subtype of CHAR.
Standard Subtypes

BINARY_INTEGER
Subtypes

NUMBER Subtypes VARCHAR2 Subtypes

NATURAL
NATURALN
POSITIVE
POSITIVEN
SIGNTYPE

DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INTEGER
INT
NUMERIC
REAL
SMALLINT

STRING
VARCHAR

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-25

Definition of Subtypes (continued)
With the NATURAL and POSITIVE subtypes, you can restrict an integer variable to non-
negative and positive values, respectively. NATURALN and POSITIVEN prevent the assigning
of nulls to an integer variable. You can use SIGNTYPE to restrict an integer variable to the
values –1, 0, and 1, which is useful in programming tri-state logic.
A constrained subtype is a subset of the values normally specified by the data type on which the
subtype is based. POSITIVE is a constrained subtype of BINARY_INTEGER.
An unconstrained subtype is not a subset of another data type; it is an alias to another data type.
FLOAT is an unconstrained subtype of NUMBER.
Use the subtypes DEC, DECIMAL, and NUMERIC to declare fixed-point numbers with a
maximum precision of 38 decimal digits.
Use the subtypes DOUBLE PRECISION and FLOAT to declare floating-point numbers with a
maximum precision of 126 binary digits, which is roughly equivalent to 38 decimal digits. Or,
use the subtype REAL to declare floating-point numbers with a maximum precision of 63 binary
digits, which is roughly equivalent to 18 decimal digits.
Use the subtypes INTEGER, INT, and SMALLINT to declare integers with a maximum
precision of 38 decimal digits.
You can create your own user-defined subtypes.
Note: You can use these subtypes for compatibility with ANSI/ISO and IBM types. Currently,
VARCHAR is synonymous with VARCHAR2. However, in future releases of PL/SQL, to
accommodate emerging SQL standards, VARCHAR may become a separate data type with
different comparison semantics. It is a good idea to use VARCHAR2 rather than VARCHAR.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-26

Copyright © 2004, Oracle. All rights reserved.

Benefits of Subtypes

Subtypes:
• Increase reliability
• Provide compatibility with ANSI/ISO and IBM types
• Promote reusability
• Improve readability

– Clarity
– Code self-documents

Benefits
If your applications require a subset of an existing data type, you can create your own subtypes.
By using subtypes, you can increase the reliability and improve the readability by indicating the
intended use of constants and variables. Subtypes can increase reliability by detecting the out-of-
range values.
With the predefined subtypes, you have compatibility with other data types from other
programming languages.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-27

Copyright © 2004, Oracle. All rights reserved.

• Subtypes are defined in the declarative section of
any PL/SQL block.

• subtype_name is a type specifier used in
subsequent declarations.

• base_type is any scalar or user-defined
PL/SQL type.

SUBTYPE subtype_name IS base_type [(constraint)]
[NOT NULL];

Declaring Subtypes

Declaring Subtypes
Subtypes are defined in the declarative section of a PL/SQL block, subprogram, or package.
Using the SUBTYPE keyword, you name the subtype and provide the name of the base type. The
base type may be constrained starting in Oracle8i, but cannot be constrained in earlier releases.
You can use the %TYPE attribute on the base type to pick up a data type from a database column
or from an existing variable data type. You can also use the %ROWTYPE attribute.
Examples

CREATE OR REPLACE PACKAGE mytypes
IS

SUBTYPE Counter IS INTEGER; -- based on INTEGER type
TYPE typ_TimeRec IS RECORD (minutes INTEGER, hours
INTEGER);
SUBTYPE Time IS typ_TimeRec; -- based on RECORD type
SUBTYPE ID_Num IS customers.customer_id%TYPE;
CURSOR cur_cust IS SELECT * FROM customers;
SUBTYPE CustFile IS cur_cust%ROWTYPE; -- based on cursor

END mytypes;
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-28

Copyright © 2004, Oracle. All rights reserved.

• Define an identifier that uses the subtype in the
declarative section.

• You can constrain a user-defined subtype when
declaring variables of that type.

• You can constrain a user-defined subtype when
declaring the subtype.

identifier_name subtype_name

Using Subtypes

identifier_name subtype_name(size)

Using Subtypes
After the subtype is declared, you can assign an identifier for that subtype. Subtypes can increase
reliability by detecting out-of-range values.

DECLARE
v_rows mytypes.Counter; --use package subtype dfn
v_customers mytypes.Counter;
v_start_time mytypes.Time;
SUBTYPE Accumulator IS NUMBER;
v_total Accumulator(4,2);

SUBTYPE Scale IS NUMBER(1,0); -- constrained subtype
v_x_axis Scale; -- magnitude range is -9 .. 9

BEGIN
v_rows := 1;
v_start_time.minutes := 15;
v_start_time.hours := 03;

dbms_output.put_line('Start time is: '||
v_start_time.hours|| ':' || v_start_time.minutes);
END;
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-29

Copyright © 2004, Oracle. All rights reserved.

DECLARE
SUBTYPE Accumulator IS NUMBER;
v_amount NUMBER(4,2);
v_total Accumulator;

BEGIN
v_amount := 99.99;
v_total := 100.00;
dbms_output.put_line('Amount is: ' || v_amount);
dbms_output.put_line('Total is: ' || v_total);
v_total := v_amount;
dbms_output.put_line('This works too: ' ||
v_total);
-- v_amount := v_amount + 1; Will show value error

END;
/

Subtype Compatibility

An unconstrained subtype is interchangeable with its
base type.

Type Compatibility
An unconstrained subtype is interchangeable with its base type. Different subtypes are
interchangeable if they have the same base type. Different subtypes are also interchangeable if
their base types are in the same data type family.

DECLARE
v_rows mytypes.Counter;
v_customers mytypes.Counter;
SUBTYPE Accumulator IS NUMBER;
v_total Accumulator(6,2);

BEGIN
SELECT COUNT(*) INTO v_customers FROM customers;
SELECT COUNT(*) INTO v_rows FROM orders;
v_total := v_customers + v_rows;
DBMS_OUTPUT.PUT_LINE('Total rows from 2 tables: '||
v_total);

EXCEPTION
WHEN value_error THEN
DBMS_OUTPUT.PUT_LINE('Error in data type.');

END;
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-30

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use guidelines for cursor design
• Declare, define, and use cursor variables
• Use subtypes as data types

Summary
• Use the guidelines for designing the cursors
• Take advantage of the features of cursor variables and pass pointers to result sets to

different applications.
• You can use subtypes to organize and strongly type data types for an application.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-31

Copyright © 2004, Oracle. All rights reserved.

Practice Overview

This practice covers the following topics:
• Determining the output of a PL/SQL block
• Improving the performance of a PL/SQL block
• Implementing subtypes
• Using cursor variables

Practice Overview
In this practice you will determine the output of a PL/SQL code snippet and modify the snippet
to improve the performance. Next, you will implement subtypes and use cursor variables to pass
values to and from a package.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-32

Practice 2
Note: You will be using oe/oe as the username/password for the practice exercises. Files
mentioned in the practice exercises are found in /labs folder. Additionally, solution scripts are
provided for each question and are located in the /soln folder. Your instructor will provide you
with the exactly location of these files.

1. Determine the output of the following code snippet.
SET SERVEROUTPUT ON
BEGIN

UPDATE orders SET order_status = order_status;
FOR v_rec IN (SELECT order_id FROM orders)
LOOP

IF SQL%ISOPEN THEN
DBMS_OUTPUT.PUT_LINE('TRUE – ' || SQL%ROWCOUNT);

ELSE
DBMS_OUTPUT.PUT_LINE('FALSE – ' || SQL%ROWCOUNT);

END IF;
END LOOP;

END;
/

2. Modify the following snippet of code to make better use of the FOR UPDATE clause and
improve the performance of the program.

DECLARE
CURSOR cur_update
IS SELECT * FROM customers
WHERE credit_limit < 5000 FOR UPDATE;

BEGIN
FOR v_rec IN cur_update
LOOP

IF v_rec IS NOT NULL
THEN

UPDATE customers
SET credit_limit = credit_limit + 200
WHERE customer_id = v_rec.customer_id;

END IF;
END LOOP;

END;
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 2-33

Practice 2 (continued)
3. Create a package specification that defines subtypes, which can be used for the

warranty_period field of the product_information table. Name this package
MY_TYPES. The type needs to hold the month and year for a warranty period.

4. Create a package named SHOW_DETAILS that contains two subroutines. The first
subroutine should show order details for the given order_id. The second subroutine
should show customer details for the given customer_id, including the customer Id,
first name, phone numbers, credit limit, and email address. Both the subroutines should use
the cursor variable to return the necessary details.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

Working with Collections

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-2

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Describe an object type
• Create an object type specification
• Implement the constructor method on objects
• Create collections

– Nested table collections, varray collections
– Associative arrays, string indexed collections

• Use collections methods
• Manipulate collections
• Distinguish between the different types of

collections and when to use them

Objectives
In this lesson, you are introduced to PL/SQL programming using collections, including user-
defined object types and constructor methods.
Oracle object types are user-defined data types that make it possible to model complex real-
world entities such as customers and purchase orders as unitary entities—objects—in the
database.
A collection is an ordered group of elements, all of the same type (for example, phone numbers
for each customer). Each element has a unique subscript that determines its position in the
collection.
Collections work like the set, queue, stack, and hash table data structures found in most third-
generation programming languages. Collections can store instances of an object type and can
also be attributes of an object type. Collections can be passed as parameters. So, you can use
them to move columns of data into and out of database tables or between client-side applications
and stored subprograms. You can define collection types in a PL/SQL package, then use the
same types across many applications.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-3

Copyright © 2004, Oracle. All rights reserved.

• An object type is a user-defined composite
data type.

• An object type encapsulates a data structure.

• Object types can be transient or persistent.

Understanding the Components
of an Object Type

Attributes:
street address
postal code

city
state_province
country_id

Object Types
Object types are abstractions of the real-world entities used in application programs. They are
analogous to Java and C++ classes. You can think of an object type as a template, and an object
as a structure that matches the template. Object types can represent many different data
structures. Object types are schema objects, subject to the same kinds of administrative control
as other schema objects.
An object, such as a car, an order, or a person, has specific attributes and behaviors. You use an
object type to maintain this perspective. An object type is a user-defined composite data type that
encapsulates a data structure.

• The variables that make up the data structure are called attributes.
• The data structure formed by a set of attributes is public (visible to client programs).

Persistent Versus Transient Objects
For persistent objects, the associated object instances are stored in the database. Persistent object
types are defined in the database with the CREATE SQL statement. Transient objects are defined
programmatically with PL/SQL and differ from persistent objects the way they are declared,
initialized, used, and deleted. When the program unit finishes execution, the transient object no
longer exists, but the type exists in the database.
Transient objects are defined as an instance of a persistent object type; therefore, transient object
attributes cannot be PL/SQL data types.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-4

Copyright © 2004, Oracle. All rights reserved.

Creating an Object Type

• Syntax

• Example of a persistent object type

CREATE [OR REPLACE] TYPE type_name
AS OBJECT
(attribute1 datatype,

attribute2 datatype,
...

);

CREATE TYPE cust_address_typ
AS OBJECT
(street_address VARCHAR2(40)
, postal_code VARCHAR2(10)
, city VARCHAR2(30)
, state_province VARCHAR2(10)
, country_id CHAR(2)
);

/

street address
postal code

city
state_province
country_id

Creating an Object Type
Creating an object type is similar to creating a package specification. In the object type
definition, you list the attributes and data types for the object that you are creating (similar to
defining variables in a package specification).
Object Methods
Object types can include procedures and functions to manipulate the object attributes. The
procedures and functions that characterize the behavior are called methods. These methods are
named when you define the object type. Another component of defining an object is creating the
object type specification. It is similar to a package specification. In the object type specification,
you define the code for the methods. Methods are covered in detail in the Oracle Database
Application Developer’s Guide - Object-Relational Features manual.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-5

Copyright © 2004, Oracle. All rights reserved.

Using an Object Type

You can use an object type as an abstract data type for
a column in a table:
CREATE TABLE customers

(customer_id NUMBER(6) ...
, cust_first_name VARCHAR2(20) ...
, cust_last_name VARCHAR2(20) ...
, cust_address cust_address_typ
...

DESCRIBE customers

Name Null? Type
---------------------------- -------- ----------
CUSTOMER_ID NOT NULL NUMBER(6)
CUST_FIRST_NAME NOT NULL VARCHAR2(20)
CUST_LAST_NAME NOT NULL VARCHAR2(20)
CUST_ADDRESS CUST_ADDRESS_TYP
...

Using an Object Type
You can use object types as a column’s data type. For example, in the CUSTOMERS table, the
column CUST_ADDRESS has the data type of CUST_ADDRESS_TYP. This makes the
CUST_ADDRESS column a multicelled field where each component is an attribute of the
CUST_ADDRESS_TYP.
You can also use object types as abstract data types for variables in a PL/SQL subroutine. In this
example, a local variable is defined to hold a value of CUST_ADDRESS_TYP type. This
variable is a transient object—it exists for the duration of the execution of the program.

DECLARE
v_address cust_address_typ;

BEGIN
SELECT cust_address

INTO v_address
FROM customers
WHERE customer_id = 101;

DBMS_OUTPUT.PUT_LINE (v_address.street_address);
END;
/

514 W Superior St
PL/SQL procedure successfully completed.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-6

Copyright © 2004, Oracle. All rights reserved.

Using Constructor Methods

INSERT INTO CUSTOMERS (customer_id, cust_first_name,
cust_last_name, cust_address)

VALUES (1000, 'John', 'Smith',
cust_address_typ ('285 Derby Street'

, '02465'
, 'Boston'
, 'MA'
, 'US'));

street address
postal code

city
state_province
country_id

Using Constructor Methods
Every object type has a constructor method. A constructor is an implicitly defined function that
is used to initialize an object. For arguments, it takes the values of the attributes for an object.
PL/SQL never calls a constructor implicitly, so you must call it explicitly. You can make
constructor calls wherever function calls are allowed. The constructor method has:

• The same name as the object type
• Formal parameters that exactly match the attributes of the object type (the number, order,

and data types are the same)
• A return value of the given object type

In the example shown, the cust_address_typ constructor is used to initialize a row in the
cust_address column of the CUSTOMERS table. The cust_address_typ constructor
matches the typ_ cust_address object and has five arguments that match the attributes for
the typ_ cust_address object.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-7

Copyright © 2004, Oracle. All rights reserved.

Retrieving Data from
Object Type Columns

SELECT customer_id, cust_first_name, cust_last_name, cust_address
FROM customers
WHERE customer_id = 1000;

CUSTOMER_ID CUST_FIRST_NAME CUST_LAST_NAME
----------- -------------------- --------------------
CUST_ADDRESS(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVINCE, COUNTRY_ID)

1000 John Smith
CUST_ADDRESS_TYP ('285 Derby Street', '02465', 'Boston', 'MA', 'US')

SELECT c.customer_id, c.cust_address.street_address,
c.cust_address.city, c.cust_address.state_province,
c.cust_address.postal_code, c.cust_address.country_id

FROM customers c
WHERE customer_id = 1000;

CUSTOMER_ID CUST_ADDRESS.STREET_ADDRESS
----------- --
CUST_ADDRESS.CITY CUST_ADDRE CUST_ADDRE CU
------------------------------ ---------- ---------- --

1000 285 Derby Street
Boston MA 02465 US

1

2

Retrieving Data from Object Type Columns
You retrieve information from object type columns by using a SELECT statement. You can view
the results as a set of the constructor type (1), or in a flattened form (2).
The flattened form is useful when you access Oracle collection columns from relational tools and
APIs, such as ODBC.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-8

Copyright © 2004, Oracle. All rights reserved.

Understanding Collections

• A collection is a group of elements, all of the
same type.

• Collections work like arrays.
• Collections can store instances of an object type

and, conversely, can be attributes of an object
type.

• Types of collections in PL/SQL:
– Nested tables
– Varrays
– Associative arrays
– String indexed collections
– INDEX BY pls_integer

Collections
A collection is a group of elements, all of the same type. Each element has a unique subscript
that determines its position in the collection. Collections work like the arrays found in most
third-generation programming languages. They can store instances of an object type and,
conversely, can be attributes of an object type. Collections can also be passed as parameters. You
can use them to move columns of data into and out of database tables or between client-side
applications and stored subprograms.
Object types are used not only to create object relational tables, but also to define collections.
You can use any of the three categories of collections:

• Nested tables can have any number of elements.
• A varray is an ordered collection of elements.
• Associative arrays (known as “index-by tables” in previous Oracle releases) are sets of key-

value pairs, where each key is unique and is used to locate a corresponding value in the
array. The key can be an integer or a string.

Note: Associative arrays indexed by integer are covered in the prerequisite courses: Oracle
Database 10g: Program with PL/SQL and Oracle Database 10g: Develop PL/SQL Program
Units and will not be emphasized in this course.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-9

Copyright © 2004, Oracle. All rights reserved.

Nested table: Varray:

Describing the Collection Types

Associative array:

1 2 3 4 5 6 a f i o t w

Index by
PLS_INTEGER

Index by
VARCHAR2

Collections (continued)
PL/SQL offers three collection types:
Nested Tables
A nested table holds a set of values. In other words, it is a table within a table. Nested tables are
unbounded, meaning the size of the table can increase dynamically. Nested tables are available
in both PL/SQL as well as the database. Within PL/SQL, nested tables are like one-dimensional
arrays whose size can increase dynamically. Within the database, nested tables are column types
that hold sets of values. The Oracle database stores the rows of a nested table in no particular
order. When you retrieve a nested table from the database into a PL/SQL variable, the rows are
given consecutive subscripts starting at 1. This gives you array-like access to individual rows.
Nested tables are initially dense but they can become sparse through deletions and therefore have
nonconsecutive subscripts.
Varrays
Variable-size arrays, or varrays, are also collections of homogeneous elements that hold a fixed
number of elements (although you can change the number of elements at run time). They use
sequential numbers as subscripts. You can define equivalent SQL types, allowing varrays to be
stored in database tables. They can be stored and retrieved through SQL, but with less flexibility
than nested tables. You can reference the individual elements for array operations, or manipulate
the collection as a whole.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-10

Collections (continued)
Varrays (continued)
Varrays are always bounded and never sparse. You can specify the maximum size of the varray
in its type definition. Its index has a fixed lower bound of 1 and an extensible upper bound. A
varray can contain a varying number of elements, from zero (when empty) to the maximum
specified in its type definition.
To reference an element, you can use the standard subscripting syntax.
Associative Arrays
Associative arrays are sets of key-value pairs, where each key is unique and is used to locate a
corresponding value in the array. The key can be either integer (PLS_INTEGER) or character
(VARCHAR2) based.
When you assign a value using a key for the first time, it adds that key to the associative array.
Subsequent assignments using the same key update the same entry. It is important to choose a
key that is unique. For example, key values may come from the primary key of a database table,
from a numeric hash function, or from concatenating strings to form a unique string value.
Because associative arrays are intended for storing temporary data rather than storing persistent
data, you cannot use them with SQL statements such as INSERT and SELECT INTO. You can
make them persistent for the life of a database session by declaring the type in a package and
assigning the values in a package body.

Choosing a PL/SQL Collection Type
If you already have code or business logic that uses some other language, you can usually
translate that language’s array and set types directly to PL/SQL collection types.

• Arrays in other languages become varrays in PL/SQL.
• Sets and bags in other languages become nested tables in PL/SQL.
• Hash tables and other kinds of unordered lookup tables in other languages become

associative arrays in PL/SQL.
If you are writing original code or designing the business logic from the start, consider the
strengths of each collection type and decide which is appropriate.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-11

Copyright © 2004, Oracle. All rights reserved.

Listing Characteristics for Collections

YesDenseDenseNoCan beSparsity

N/AStored in-
line (if <
4,000
bytes)

N/AStored out
of line

N/AStorage

Does not
retain
ordering
and
subscripts

No

DB
Nested
Tables

Retains
ordering
and
subscripts

Yes

PL/SQL
Varrays

Retains
ordering
and
subscripts

Yes

DB
Varrays

Retains
ordering
and
subscripts

Does not
retain
ordering
and
subscripts

Ordering

DynamicNoMaximum
size

PL/SQL
Associative
Arrays

PL/SQL
Nested
Tables

Choosing Between Nested Tables and Associative Arrays
• Use associative arrays when:

- You need to collect information of unknown volume
- You need flexible subscripts (negative, non-sequential, or string based)
- You need to pass the collection to and from the database server (use associative

arrays with the bulk constructs)
• Use nested tables when:

- You need persistence
- You need to pass the collection as a parameter

Choosing Between Nested Tables and Varrays
• Use varrays when:

- The number of elements is known in advance
- The elements are usually all accessed in sequence

• Use nested tables when:
- The index values are not consecutive
- There is no predefined upper bound for index values
- You need to delete or update some elements, but not all the elements at once
- You would usually create a separate lookup table, with multiple entries for each row

of the main table, and access it through join queries

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-12

Copyright © 2004, Oracle. All rights reserved.

Using Collections Effectively

• Varrays involve fewer disk accesses and are more
efficient.

• Use nested tables for storing large amounts of
data.

• Use varrays to preserve the order of elements in
the collection column.

• If you do not have a requirement to delete
elements in the middle of a collection, favor
varrays.

• Varrays do not allow piecewise updates.

Guidelines for Using Collections Effectively
• Because varray data is stored in-line (in the same tablespace), retrieving and storing varrays

involves fewer disk accesses. Varrays are thus more efficient than nested tables.
• To store large amounts of persistent data in a column collection, use nested tables. This

way the Oracle server can use a separate table to hold the collection data which can grow
over time. For example, when a collection for a particular row could contain 1 to 1,000,000
elements, a nested table is simpler to use.

• If your data set is not very large and it is important to preserve the order of elements in a
collection column, use varrays. For example, if you know that in each row the collection
will not contain more than ten elements, you can use a varray with a limit of ten.

• If you do not want to deal with deletions in the middle of the data set, use varrays.
• If you expect to retrieve the entire collection simultaneously, use varrays.
• Varrays do not allow piecewise updates.

Note: If your application requires negative subscripts, you can use only associative arrays.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-13

Copyright © 2004, Oracle. All rights reserved.

TYPE type_name IS TABLE OF (element_type)

INDEX BY VARCHAR2(size)

Creating Collection Types

Nested table in the database:

Nested table in PL/SQL:

Varray in the database:

Varray in PL/SQL:

Associative array in PL/SQL (string indexed):

CREATE [OR REPLACE] TYPE type_name AS TABLE OF
Element_datatype [NOT NULL];

CREATE [OR REPLACE] TYPE type_name AS VARRAY
(max_elements) OF element_datatype [NOT NULL];

TYPE type_name IS TABLE OF element_datatype

[NOT NULL];

TYPE type_name IS VARRAY (max_elements) OF

element_datatype [NOT NULL];

Creating Collection Types
To create a collection, you first define a collection type, and then declare collections of that type.
The slide above shows the syntax for defining nested table and varray collection types in both
the database (persistent) and in PL/SQL (transient), and defining a string indexed collection in
PL/SQL.
Creating Collections in the Database
You can create a nested table or a varray data type in the database, which makes the data type
available to use in places such as columns in database tables, variables in PL/SQL programs, and
attributes of object types.
Before you can define a database table containing a nested table or varray, you must first create
the data type for the collection in the database.
Use the syntax shown in the slide to create collection types in the database.
Creating Collections in PL/SQL
You can also create a nested table or a varray in PL/SQL. Use the syntax shown in the slide to
create collection types in PL/SQL. You can create associative arrays in PL/SQL only.
Note: Collections can be nested. In Oracle9i and later, collections of collections are possible.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-14

Copyright © 2004, Oracle. All rights reserved.

• First, define an object type:

• Second, declare a column of that collection type:

CREATE TYPE typ_item AS OBJECT --create object
(prodid NUMBER(5),
price NUMBER(7,2))

/
CREATE TYPE typ_item_nst -- define nested table type

AS TABLE OF typ_item
/

CREATE TABLE pOrder (-- create database table
ordid NUMBER(5),
supplier NUMBER(5),
requester NUMBER(4),
ordered DATE,
items typ_item_nst)
NESTED TABLE items STORE AS item_stor_tab

/

Declaring Collections: Nested Table

1

2

3

Declaring Collections: Nested Table
To create a table based on a nested table, perform the following steps:

1. Create the typ_item type, which holds the information for a single line item.
2. Create the typ_item_nst type, which is created as a table of the typ_item type.

Note: You must create the typ_item_nst nested table type based on the previously
declared type because it is illegal to declare multiple data types in this nested table
declaration.

3. Create the pOrder table and use the nested table type in a column declaration, which will
include an arbitrary number of items based on the typ_item_nst type. Thus, each row
of pOrder may contain a table of items.
The NESTED TABLE STORE AS clause is required to indicate the name of the storage
table in which the rows of all the values of the nested table reside. The storage table is
created in the same schema and the same tablespace as the parent table.
Note: The dictionary view USER_COLL_TYPES holds information about collections.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-15

Copyright © 2004, Oracle. All rights reserved.

Supplier Requester Ordered Items

pOrder nested table

123

321

456

789

10-MAR-97

12-FEB-97

Understanding Nested Table Storage

Nested tables are stored out-of-line in storage tables.

Storage table

$ 45.95
$ 99.99

$ 0.22
$300.00

901
879

333
112

NESTED_TABLE_ID ProdID Price

Nested Table Storage
The rows for all nested tables of a particular column are stored within the same segment. This
segment is called the storage table.
A storage table is a system-generated segment in the database that holds instances of nested
tables within a column. You specify the name for the storage table by using the NESTED
TABLE STORE AS clause in the CREATE TABLE statement. The storage table inherits
storage options from the outermost table.
To distinguish between nested table rows belonging to different parent table rows, a system-
generated nested table identifier that is unique for each outer row enclosing a nested table is
created.
Operations on storage tables are performed implicitly by the system. You should not access or
manipulate the storage table, except implicitly through its containing objects.
Privileges of the column of the parent table are transferred to the nested table.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-16

Copyright © 2004, Oracle. All rights reserved.

CREATE TABLE department (-- create database table
dept_id NUMBER(2),
name VARCHAR2(15),
budget NUMBER(11,2),
projects typ_ProjectList) -- declare varray as column

/

• First, define a collection type:

• Second, declare a collection of that type:

CREATE TYPE typ_Project AS OBJECT(--create object
project_no NUMBER(2),
title VARCHAR2(35),
cost NUMBER(7,2))

/
CREATE TYPE typ_ProjectList AS VARRAY (50) OF typ_Project

-- define VARRAY type
/

Declaring Collections: Varray

1

2

3

Example
The example above shows how to create a table based on a varray.

1. Create the typ_project type, which holds information for a project.
2. Create the typ_ projectlist type, which is created as a varray of the project type.

The varray contains a maximum of 50 elements.
3. Create the department table and use the varray type in a column declaration. Each

element of the varray will store a project object.
This example demonstrates how to create a varray of phone numbers, then use it in a
CUSTOMERS table (The OE sample schema uses this definition.):

CREATE TYPE phone_list_typ
AS VARRAY(5) OF VARCHAR2(25);
/
CREATE TABLE customers
(customer_id NUMBER(6)
,cust_first_name VARCHAR2(50)
,cust_last_name VARCHAR2(50)
,cust_address cust_address_typ(100)
,phone_numbers phone_list_typ
...
);

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-17

Copyright © 2004, Oracle. All rights reserved.

• You can declare collections as formal parameters
of procedures and functions.

• You can specify a collection type in the RETURN
clause of a function specification.

• Collections follow the usual scoping and
instantiation rules.

CREATE OR REPLACE PACKAGE manage_dept_proj AS
TYPE typ_proj_details IS TABLE OF typ_Project;
...
PROCEDURE allocate_proj
(propose_proj IN typ_proj_details);

FUNCTION top_project (n NUMBER)
RETURN typ_proj_details;

...

Working with Collections in PL/SQL

Working with Collections
There are several points about collections that you must know when working with them:

• You can declare collections as the formal parameters of functions and procedures. That
way, you can pass collections to stored subprograms and from one subprogram to another.

• A function’s RETURN clause can be a collection type.
• Collections follow the usual scoping and instantiation rules. In a block or subprogram,

collections are instantiated when you enter the block or subprogram and cease to exist
when you exit. In a package, collections are instantiated when you first reference the
package and cease to exist when you end the database session.

In the example in the slide, a nested table is used as the formal parameter of a packaged
procedure, the data type of an IN parameter for the procedure ALLOCATE_PROJ, and the return
data type of the TOP_PROJECT function.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-18

Copyright © 2004, Oracle. All rights reserved.

Three ways to initialize:
• Use a constructor.
• Fetch from the database.
• Assign another collection variable directly.

Initializing Collections

DECLARE --this example uses a constructor
v_accounting_project typ_ProjectList;

BEGIN
v_accounting_project :=
typ_ProjectList

(typ_Project (1, 'Dsgn New Expense Rpt', 3250),
typ_Project (2, 'Outsource Payroll', 12350),
typ_Project (3, 'Audit Accounts Payable',1425));

INSERT INTO department
VALUES(10, 'Accounting', 123, v_accounting_project);

...
END;
/

Initializing Collections
Until you initialize it, a collection is atomically null (that is, the collection itself is null, not its
elements). To initialize a collection, you can use one of the following means:

• Use a constructor, which is a system-defined function with the same name as the collection
type. A constructor allows the creation of an object from an object type. Invoking a
constructor is a way to instantiate (create) an object. This function “constructs” collections
from the elements passed to it. In the example shown above, you pass three elements to the
typ_ProjectList() constructor, which returns a varray containing those elements.

• Read an entire collection from the database using a fetch.
• Assign another collection variable directly. You can copy the entire contents of one

collection to another as long as both are built from the same data type.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-19

Copyright © 2004, Oracle. All rights reserved.

DECLARE -- this example uses a fetch from the database
v_accounting_project typ_ProjectList;

BEGIN
SELECT projects
INTO v_accounting_project
FROM department
WHERE dept_id = 10;

...
END;
/

Initializing Collections

DECLARE -- this example assigns another collection
-- variable directly

v_accounting_project typ_ProjectList;
v_backup_project typ_ProjectList;

BEGIN
SELECT projects
INTO v_accounting_project
FROM department
WHERE dept_id = 10;

v_backup_project := v_accounting_project;
END;
/

1

2

Initializing Collections (continued)
In the first example shown above, an entire collection from the database is fetched into the local
PL/SQL collection variable.
In the second example shown above, the entire contents of one collection variable are assigned to
another collection variable.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-20

Copyright © 2004, Oracle. All rights reserved.

Use the collection name and a subscript to reference a
collection element:
• Syntax:

• Example:

• To reference a field in a collection:

collection_name(subscript)

Referencing Collection Elements

v_accounting_project(1)

v_accounting_project(1).cost

Referencing Collection Elements
Every element reference includes a collection name and a subscript enclosed in parentheses. The
subscript determines which element is processed. To reference an element, you can specify its
subscript by using the following syntax:

collection_name(subscript)

In the preceding syntax, subscript is an expression that yields a positive integer. For nested
tables, the integer must lie in the range 1 to 2147483647. For varrays, the integer must lie in the
range 1 to maximum_size.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-21

Copyright © 2004, Oracle. All rights reserved.

Using Collection Methods

• EXISTS

• COUNT

• LIMIT

• FIRST and LAST

• PRIOR and NEXT

• EXTEND

• TRIM

• DELETE

collection_name.method_name [(parameters)]

Using Collection Methods
You can use collection methods from procedural statements but not from SQL statements.
Function or
Procedure

Description

EXISTS Returns TRUE if the nth element in a collection exists, otherwise,
EXISTS(N) returns FALSE

COUNT Returns the number of elements that a collection contains
LIMIT For nested tables that have no maximum size, LIMIT returns NULL; for

varrays, LIMIT returns the maximum number of elements that a varray can
contain

FIRST and
LAST

Returns the first and last (smallest and largest) index numbers in a
collection, respectively

PRIOR and
NEXT

PRIOR(n) returns the index number that precedes index n in a collection;
NEXT(n) returns the index number that follows index n.

EXTEND Appends one null element. EXTEND(n) appends n elements; EXTEND(n,
i) appends n copies of the ith element

TRIM Removes one element from the end; TRIM(n) removes n elements from
the end of a collection

DELETE Removes all elements from a nested or associative array table.
DELETE(n) removes the nth element ; DELETE(m, n) removes a
range. Note: Does not work on varrays.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-22

Copyright © 2004, Oracle. All rights reserved.

DECLARE
i INTEGER;
v_accounting_project typ_ProjectList;

BEGIN
v_accounting_project := typ_ProjectList(
typ_Project (1,'Dsgn New Expense Rpt', 3250),
typ_Project (2, 'Outsource Payroll', 12350),
typ_Project (3, 'Audit Accounts Payable',1425));

i := v_accounting_project.FIRST ;
WHILE i IS NOT NULL LOOP
IF v_accounting_project(i).cost > 10000 then

DBMS_OUTPUT.PUT_LINE('Project too expensive: '
|| v_accounting_project(i).title);

END IF;
i := v_accounting_project.NEXT (i);

END LOOP;
END;
/

Using Collection Methods

Traverse collections with methods:

Traversing Collections
In the example shown, the FIRST method finds the smallest index number, the NEXT method
traverses the collection starting at the first index. The output from this block of code shown
above is:

Project too expensive: Outsource Payroll

You can use the PRIOR and NEXT methods to traverse collections indexed by any series of
subscripts. In the example shown, the NEXT method is used to traverse a varray.
PRIOR(n) returns the index number that precedes index n in a collection. NEXT(n) returns
the index number that succeeds index n. If n has no predecessor, PRIOR(n) returns NULL.
Likewise, if n has no successor, NEXT(n) returns NULL. PRIOR is the inverse of NEXT.
PRIOR and NEXT do not wrap from one end of a collection to the other.
When traversing elements, PRIOR and NEXT ignore deleted elements.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-23

Copyright © 2004, Oracle. All rights reserved.

DECLARE
v_my_projects typ_ProjectList;
v_array_count INTEGER;
v_last_element INTEGER;

BEGIN
SELECT projects INTO v_my_projects FROM department
WHERE dept_id = 10;

v_array_count := v_my_projects.COUNT ;
dbms_output.put_line('The # of elements is: ' ||

v_array_count);
v_my_projects.EXTEND ; --make room for new project
v_last_element := v_my_projects.LAST ;
dbms_output.put_line('The last element is: ' ||

v_last_element);
IF v_my_projects.EXISTS(5) THEN
dbms_output.put_line('Element 5 exists!');

ELSE
dbms_output.put_line('Element 5 does not exist.');

END IF;
END;
/

Using Collection Methods

Example
The block of code shown uses the COUNT, EXTEND, LAST, and EXISTS methods on the
my_projects varray. The COUNT method reports that the projects collection holds three
projects for department 10. The EXTEND method creates a fourth empty project. Using the LAST
method reports that four projects exist. When testing for the existence of a fifth project, the
program reports that it does not exist. The output from this block of code is as follows:

The # of elements is: 3
The last element is: 4
Element 5 does not exist.
PL/SQL procedure successfully completed.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-24

Copyright © 2004, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE add_project (
p_deptno IN NUMBER,
p_new_project IN typ_Project,
p_position IN NUMBER)

IS
v_my_projects typ_ProjectList;

BEGIN
SELECT projects INTO v_my_projects FROM department
WHERE dept_id = p_deptno FOR UPDATE OF projects;

v_my_projects.EXTEND; --make room for new project
/* Move varray elements forward */
FOR i IN REVERSE p_position..v_my_projects.LAST - 1 LOOP
v_my_projects(i + 1) := v_my_projects(i);

END LOOP;
v_my_projects(p_position) := p_new_project; -- add new

-- project
UPDATE department SET projects = v_my_projects
WHERE dept_id = p_deptno;

END add_project;
/

Manipulating Individual Elements

Manipulating Individual Elements
You must use PL/SQL procedural statements to reference the individual elements of a varray in
an INSERT, UPDATE, or DELETE statement. In the example shown in the slide, the stored
procedure inserts a new project into a department’s project at a given position.
To execute the procedure, pass the department number to which you want to add a project, the
project information, and the position where the project information is to be inserted.

EXECUTE add_project(10, -
typ_Project(4, 'Information Technology', 789), 4)

SELECT * FROM department;
DEPT_ID NAME BUDGET

---------- --------------- ----------
PROJECTS(PROJECT_NO, TITLE, COST)
--

10 Accounting 123
PROJECTLIST(PROJECT(1, 'Dsgn New Expense Rpt', 3250),
PROJECT(2, 'Outsource Payroll', 12350),
PROJECT(3, 'Audit Accounts Payable', 1425),
PROJECT(4, 'Information Technology', 789))

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-25

Copyright © 2004, Oracle. All rights reserved.

Avoiding Collection Exceptions

Common exceptions with collections:
• COLLECTION_IS_NULL

• NO_DATA_FOUND

• SUBSCRIPT_BEYOND_COUNT

• SUBSCRIPT_OUTSIDE_LIMIT

• VALUE_ERROR

Avoiding Collection Exceptions
In most cases, if you reference a nonexistent collection element, PL/SQL raises a predefined
exception.

Exception Raised when:
COLLECTION_IS_NULL You try to operate on an atomically null collection
NO_DATA_FOUND A subscript designates an element that was deleted
SUBSCRIPT_BEYOND_COUNT A subscript exceeds the number of elements in a

collection
SUBSCRIPT_OUTSIDE_LIMIT A subscript is outside the legal range
VALUE_ERROR A subscript is null or not convertible to an integer

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-26

Copyright © 2004, Oracle. All rights reserved.

Common exceptions with collections:
DECLARE

TYPE NumList IS TABLE OF NUMBER;
nums NumList; -- atomically null

BEGIN
/* Assume execution continues despite the raised

exceptions. */
nums(1) := 1; -- raises COLLECTION_IS_NULL
nums := NumList(1,2); -- initialize table
nums(NULL) := 3 -- raises VALUE_ERROR
nums(0) := 3; -- raises SUBSCRIPT_OUTSIDE_LIMIT
nums(3) := 3; -- raises SUBSCRIPT_BEYOND_COUNT
nums.DELETE(1); -- delete element 1
IF nums(1) = 1 THEN -- raises NO_DATA_FOUND

...

Avoiding Collection Exceptions

Example
In the first case, the nested table is atomically null. In the second case, the subscript is null. In
the third case, the subscript is outside the legal range. In the fourth case, the subscript exceeds
the number of elements in the table. In the fifth case, the subscript designates a deleted element.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-27

Copyright © 2004, Oracle. All rights reserved.

Working with Collections in SQL

Querying collections:

• Querying a collection column in the SELECT list
nests the elements of the collection in the result
row with which the collection is associated.

• To unnest results from collection queries, use the
TABLE expression in the FROM clause.

SELECT * FROM department;

DEPT_ID NAME BUDGET
---------- --------------- ----------
PROJECTS(PROJECT_NO, TITLE, COST)

10 Accounting 123
PROJECTLIST(PROJECT(1, 'Dsgn New Expense Rpt', 3250), ...
oll', 12350), PROJECT(3, 'Audit Accounts Payable', ...

Querying Collections
You can use two general ways to query a table that contains a column or attribute of a collection
type. One way returns the collections nested in the result rows that contain them. By including
the collection column in the SELECT list, the output shows as a row associated with the other
row output in the SELECT list.
Another method to display the output is to unnest the collection such that each collection
element appears on a row by itself. You can use the TABLE expression in the FROM clause to
unnest a collection.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-28

Copyright © 2004, Oracle. All rights reserved.

TABLE expression:

• Enables you to query a collection in the FROM
clause like a table

• Can be used to query any collection value
expression, including transient values such as
variables and parameters

SELECT d1.dept_id, d1.budget, d2.*
FROM department d1, TABLE(d1.projects) d2;

DEPT_ID BUDGET PROJECT_NO TITLE COST
------- ------- ---------- --------------------------- ----------

10 123 1 Dsgn New Expense Rpt 3250
10 123 2 Outsource Payroll 12350
10 123 3 Audit Accounts Payable 1425
10 123 4 Information Technology 789

Working with Collections in SQL

Querying Collections with the TABLE Expression
To view collections in a conventional format, you must unnest, or flatten, the collection attribute
of a row into one or more relational rows. You can do this by using a TABLE expression with the
collection. A TABLE expression enables you to query a collection in the FROM clause like a
table. In effect, you join the nested table with the row that contains the nested table without
writing a JOIN statement.
The collection column in the TABLE expression uses a table alias to identify the containing
table.
You can use a subquery with the TABLE expression:

SELECT *
FROM TABLE(SELECT d.projects

FROM department d
WHERE d.dept_id = 10);

You can use a TABLE expression in the FROM clause of a SELECT statement embedded in a
CURSOR expression:

SELECT d.dept_id, CURSOR(SELECT * FROM TABLE(d.projects))
FROM department d;

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-29

Copyright © 2004, Oracle. All rights reserved.

Working with Collections in SQL

• The Oracle database supports the following DML
operations on nested table columns:
– Inserts and updates that provide a new value for the

entire collection
– Piecewise updates
– Inserting new elements into the collection
– Deleting elements from the collection
– Updating elements of the collection

• The Oracle database does not support piecewise
updates on varray columns.
– Varray columns can be inserted into or updated as

atomic units.

DML Operations on Nested Table Columns
You can perform DML operations on nested table columns by providing inserts and updates that
supply a new value for the entire collection. Previously, the pOrder table was defined with the
ITEMS column as a nested table.

DESCRIBE pOrder
Name Null? Type
------------------------- -------- -------------
ORDID NUMBER(5)
SUPPLIER NUMBER(5)
REQUESTER NUMBER(4)
ORDERED DATE
ITEMS ITEM_NST_TYP

This example inserts rows by providing a new value for the entire collection:
INSERT INTO pOrder

VALUES (500, 50, 5000, sysdate,
typ_item_nst(typ_item (55, 555)));

1 row created.

INSERT INTO pOrder
VALUES (800, 80, 8000, sysdate,

typ_item_nst (typ_item (88, 888)));
1 row created.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-30

Copyright © 2004, Oracle. All rights reserved.

Working with Collections in SQL

Piecewise DML on nested table columns:
• INSERT

• UPDATE

• DELETE

INSERT INTO TABLE
(SELECT p.items FROM pOrder p WHERE p.ordid = 500)

VALUES (44, 444);

UPDATE TABLE
(SELECT p.items FROM pOrder p
WHERE p.ordid = 800) i

SET VALUE(i) = typ_item(99, 999)
WHERE i.prodid = 88;

DELETE FROM TABLE
(SELECT p.items FROM pOrder p WHERE p.ordid = 500) i

WHERE i.prodid = 55;

DML on Nested Table Columns
For piecewise updates of nested table columns, the DML statement identifies the nested table
value to be operated on by using the TABLE expression.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-31

Copyright © 2004, Oracle. All rights reserved.

Using Set Operations on Collections

Oracle Database 10g supports the following
multiset comparison operations on nested tables:

The IS [NOT] A SET condition checks whether a given
nested table is composed of unique elements.

The IS [NOT] EMPTY condition checks whether a given
nested table is empty or not empty, regardless of whether
any of the elements are NULL.

The MEMBER [OF] or NOT MEMBER [OF] condition tests
whether an element is a member of a nested table.

The SUBMULTISET [OF] condition checks whether a nested
table is a subset of another nested table.

The IN condition checks whether a nested table is in a list of
nested tables.

The (=) and (<>) conditions return a Boolean value indicating
whether the input nested tables are identical or not.

Description

Empty Comparison

Set Comparison

Member of a Nested
Table Comparison

IN Comparisons

Subset of Multiset
Comparison

Equal, Not equal
Comparisons

Set Operation

Comparisons of Collections
Starting with the Oracle Database 10g release, you can use comparison operators and ANSI SQL
multiset operations on nested tables.
The conditions listed in this section allow comparisons of nested tables. There is no mechanism
for comparing varrays.
In addition to the conditions listed in the slide, you can also use the multiset operations with
nested tables:

• The CARDINALITY function returns the number of elements in a varray or nested table.
• The COLLECT function is an aggregate function which would create a multiset from a set

of elements.
• The MULTISET EXCEPT operator inputs two nested tables and returns a nested table

whose elements are in the first nested table but not in the second nested table.
• The MULTISET INTERSECT operator returns a nested table whose values are common

in the two input nested tables.
• The MULTISET UNION operator returns a nested table whose values are those of the two

input nested tables.
This list is not complete. For detailed information, refer to “Support for Collection Data types”
in Oracle Database Application Developer’s Guide - Object-Relational Features.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-32

Copyright © 2004, Oracle. All rights reserved.

Using Set Operations on Collections

CREATE OR REPLACE TYPE billdate IS TABLE OF DATE;
/
ALTER TABLE pOrder ADD
(notice billdate , payments billdate)

NESTED TABLE notice STORE AS notice_store_tab
NESTED TABLE payments STORE AS payments_store_tab;

/
UPDATE pOrder
SET notice = billdate('15-JAN-02', '15-FEB-02', '15-MAR-02'),

payments = billdate('15-FEB-02', '15-MAR-02', '15-JAN-02')
WHERE ordid = 500;

SELECT ordid
FROM pOrder
WHERE notice = payments;

ORDID

500

Equality and Non-Equality Predicates (= and <>)
The equal (=) and not equal (<>) operators can be used to compare nested tables. A Boolean
result is returned from the comparison. Nested tables are considered equal if they have the same
named type, the same cardinality, and their elements are equal. To make nested table
comparisons, the element type needs to be comparable.
In this example, the pOrder table is altered. Two columns are added. Both columns are nested
tables that hold the DATE data type. Dates are entered into the two columns for a specific order
number. These two collections are compared with the equality predicate.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-33

Copyright © 2004, Oracle. All rights reserved.

Using Set Operations on Collections

CREATE OR REPLACE TYPE typ_billdate IS TABLE OF DATE;
/
DECLARE
b1 BOOLEAN;
notice typ_billdate;
payments typ_billdate;

BEGIN
notice := typ_billdate('15-JAN-02','15-FEB-02','15-MAR-02');
payments := typ_billdate('15-FEB-02','15-MAR-02','15-JAN-02');
b1 := notice = payments;
IF b1 THEN
dbms_output.put_line('They are equal.');

ELSE
dbms_output.put_line('They are NOT equal.');

END IF;
END;
/

Type created.
They are equal.
PL/SQL procedure successfully completed.

Set Operations in PL/SQL
In this example, two nested tables are defined in a PL/SQL block. Both are nested tables of the
DATE data type. Date values are entered into the nested tables and the set of values in one nested
table is compared using the equality operator with the set of values in the other nested table.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-34

Copyright © 2004, Oracle. All rights reserved.

Using Multiset Operations on Collections

You can use the ANSI multiset comparison operations
on nested table collections:
• MULTISET EXCEPT

• MULTISET INTERSECT

• MULTISET UNION
UPDATE pOrder
SET notice = billdate('31-JAN-02', '28-FEB-02', '31-MAR-02'),

payments = billdate('28-FEB-02', '31-MAR-02')
WHERE ordid = 500;

SELECT notice MULTISET INTERSECT payments
FROM pOrder ;

NOTICEMULTISETINTERSECTPAYMENTS

BILLDATE('28-FEB-02', '31-MAR-02')

Multiset Operations
In this example, the MULTISET INTERSECT operator finds the values that are common in the
two input tables, NOTICE and PAYMENTS, and returns a nested table with the common results.
By using the CAST operator, you can convert collection-typed values of one type into another
collection type. You can cast a named collection (such as a varray or a nested table) into a type-
compatible named collection. For more information about the CAST operator with the
MULTISET operand, see the topic “CAST” in Oracle Database SQL Reference 10g Release 1.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-35

Copyright © 2004, Oracle. All rights reserved.

Using String Indexed Associative Arrays

Associative arrays:
• Indexed by strings can improve performance
• Are pure memory structures that are much faster

than schema-level tables
• Provide significant additional flexibility

a f i o t w

When to Use String Indexed Arrays
Starting with Oracle9i Database Release 2, you can use INDEX BY VARCHAR2 tables (also
known as string indexed arrays). These tables are optimized for efficiency by implicitly using the
B*-tree organization of the values.
The INDEX BY VARCHAR2 table is optimized for efficiency of lookup on a non-numeric key,
where the notion of sparseness is not really applicable. In contrast, INDEX BY PLS_INTEGER
tables are optimized for compactness of storage on the assumption that the data is dense.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-36

Copyright © 2004, Oracle. All rights reserved.

Using String Indexed Associative Arrays

CREATE OR REPLACE PROCEDURE report_credit
(p_last_name customers.cust_last_name%TYPE,
p_credit_limit customers.credit_limit%TYPE)

IS
TYPE typ_name IS TABLE OF customers%ROWTYPE

INDEX BY customers.cust_email%TYPE;
v_by_cust_email typ_name;
i VARCHAR2(30);

PROCEDURE load_arrays IS
BEGIN

FOR rec IN (SELECT * FROM customers WHERE cust_email IS NOT NULL)
LOOP

-- Load up the array in single pass to database table.
v_by_cust_email (rec.cust_email) := rec;

END LOOP;
END;

BEGIN
...

Using String Indexed Arrays
If you need to do heavy processing of customer information in your program that requires going
back and forth over the set of selected customers, you can use string indexed arrays to store,
process, and retrieve the required information.
This can also be done in SQL, but probably in a less efficient implementation. If you need to do
multiple passes over a significant set of static data, you can instead move it from the database
into a set of collections. Accessing collection-based data is much faster than going through the
SQL engine.
After you have transferred the data from the database to the collections, you can use string- and
integer-based indexing on those collections to, in essence, mimic the primary key and unique
indexes on the table.
In the REPORT_CREDIT procedure shown, you or a customer may need to determine whether a
customer has adequate credit. The string indexed collection is loaded with the customer
information in the LOAD_ARRAYS procedure. In the main body of the program, the collection is
traversed to find the credit information. The e-mail name is reported in case there is more than
one customer with the same last name.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-37

Copyright © 2004, Oracle. All rights reserved.

Using String Indexed Associative Arrays

...
BEGIN

load_arrays;
i:= v_by_cust_email.FIRST;
dbms_output.put_line ('For credit amount of: ' || p_credit_limit);
WHILE i IS NOT NULL LOOP

IF v_by_cust_email(i).cust_last_name = p_last_name
AND v_by_cust_email(i).credit_limit > p_credit_limit

THEN dbms_output.put_line ('Customer '||
v_by_cust_email(i).cust_last_name || ': ' ||
v_by_cust_email(i).cust_email || has credit limit of: ' ||
v_by_cust_email(i).credit_limit);

END IF;
i := v_by_cust_email.NEXT(i);

END LOOP;
END report_credit;
/

EXECUTE report_credit('Walken', 1200)
For credit amount of: 1200
Customer Walken: Emmet.Walken@LIMPKIN.COM has credit limit of: 3600
Customer Walken: Prem.Walken@BRANT.COM has credit limit of: 3700

PL/SQL procedure successfully completed.

Using String Indexed Arrays (continued)
In this example, the string indexed collection is traversed using the NEXT method.
A more efficient use of the string indexed collection is to index the collection with the customer
e-mail. Then you can immediately access the information based on the customer e-mail key. You
would need to pass the e-mail name instead of the customer last name.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-38

Using String Indexed Arrays (continued)
Here is the modified code:

CREATE OR REPLACE PROCEDURE report_credit
(p_email customers.cust_last_name%TYPE,
p_credit_limit customers.credit_limit%TYPE)

IS
TYPE typ_name IS TABLE OF customers%ROWTYPE

INDEX BY customers.cust_email%TYPE;
v_by_cust_email typ_name;
i VARCHAR2(30);

PROCEDURE load_arrays IS
BEGIN

FOR rec IN (SELECT * FROM customers
WHERE cust_email IS NOT NULL) LOOP

v_by_cust_email (rec.cust_email) := rec;
END LOOP;

END;

BEGIN
load_arrays;
dbms_output.put_line

('For credit amount of: ' || p_credit_limit);
IF v_by_cust_email(p_email).credit_limit > p_credit_limit

THEN dbms_output.put_line ('Customer '||
v_by_cust_email(p_email).cust_last_name ||
': ' || v_by_cust_email(p_email).cust_email ||
' has credit limit of: ' ||
v_by_cust_email(p_email).credit_limit);

END IF;
END report_credit;
/

EXECUTE report_credit('Prem.Walken@BRANT.COM', 100)
For credit amount of: 100
Customer Walken: Prem.Walken@BRANT.COM has credit limit of:
3700

PL/SQL procedure successfully completed.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-39

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Identify types of collections

– Nested tables
– Varrays
– Associative arrays

• Define nested tables and varrays in the database
• Define nested tables, varrays, and associative

arrays in PL/SQL
– Access collection elements
– Use collection methods in PL/SQL
– Identify raised exceptions with collections
– Decide which collection type is appropriate for each

scenario

Summary
Collections are a grouping of elements, all of the same type. The types of collections are nested
tables, varrays, and associative arrays. You can define nested tables and in the database. Nested
tables, varrays, and associative arrays can be used in a PL/SQL program.
When using collections in PL/SQL programs, you can access collection elements, use predefined
collection methods, and use exceptions that are commonly encountered with collections.
There are guidelines for using collections effectively and to determine which collection type is
appropriate under specific circumstances.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-40

Copyright © 2004, Oracle. All rights reserved.

Practice Overview

This practice covers the following topic:
• Analyzing collections
• Using collections

Practice Overview
In this practice, you will analyze collections for common errors, then you will create a collection
and write a PL/SQL package to manipulate the collection.
For detailed instructions on performing this practice, see Appendix A, “Practice Solutions.”

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-41

Practice 3
Collection Analysis

1. Examine the following definitions. Run the lab_03_01.sql script to create these
objects.

CREATE TYPE typ_item AS OBJECT --create object
(prodid NUMBER(5),
price NUMBER(7,2))

/
CREATE TYPE typ_item_nst -- define nested table type

AS TABLE OF typ_item
/
CREATE TABLE pOrder (-- create database table

ordid NUMBER(5),
supplier NUMBER(5),
requester NUMBER(4),
ordered DATE,
items typ_item_nst)
NESTED TABLE items STORE AS item_stor_tab

/

2. The code shown below generates an error. Run the lab_03_02.sql script to generate
and view the error.

BEGIN
-- Insert an order
INSERT INTO pOrder

(ordid, supplier, requester, ordered, items)
VALUES (1000, 12345, 9876, SYSDATE, NULL);

-- insert the items for the order created
INSERT INTO THE (SELECT items

FROM pOrder
WHERE ordid = 1000)

VALUES(typ_item(99, 129.00));
END;
/

Why is the error occurring?

How can you fix the error?

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-42

Practice 3 (continued)
Collection Analysis (continued)

3. Examine the following code. This code produces an error. Which line causes the error, and
how do you fix it?
(Note: You can run the lab_03_03.sql script to view the error output).

DECLARE
TYPE credit_card_typ
IS VARRAY(100) OF VARCHAR2(30);

v_mc credit_card_typ := credit_card_typ();
v_visa credit_card_typ := credit_card_typ();
v_am credit_card_typ;
v_disc credit_card_typ := credit_card_typ();
v_dc credit_card_typ := credit_card_typ();

BEGIN
v_mc.EXTEND;
v_visa.EXTEND;
v_am.EXTEND;
v_disc.EXTEND;
v_dc.EXTEND;

END;
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 3 (continued)
Using Collections
In the following practice exercises, you will implement a nested table column in the
CUSTOMERS table and write PL/SQL code to manipulate the nested table.

4. Create a nested table to hold credit card information.

Create an object type called typ_cr_card. It should have the following specification:
card_type VARCHAR2(25)
card_num NUMBER

Create a nested table type called typ_cr_card_nst that is a table of typ_cr_card.
Add a column to the CUSTOMERS table called credit_cards. Make this column a
nested table of type typ_cr_card_nst. You can use the following syntax:

ALTER TABLE customers ADD
(credit_cards typ_cr_card_nst

NESTED TABLE credit_cards STORE AD c_c_store_tab);

5. Create a PL/SQL package that manipulates the credit_cards column in the
CUSTOMERS table.

Open the lab_03_05.sql file. It contains the package specification and part of the
package body. Complete the code so that the package:

- Inserts credit card information (the credit card name and number for a specific
customer.)

- Displays credit card information in an unnested format.
CREATE OR REPLACE PACKAGE credit_card_pkg
IS

PROCEDURE update_card_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no

VARCHAR2);
PROCEDURE display_card_info

(p_cust_id NUMBER);
END credit_card_pkg; -- package spec
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-44

Practice 3 (continued)
Using Collections (continued)

CREATE OR REPLACE PACKAGE BODY credit_card_pkg
IS

PROCEDURE update_card_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no

VARCHAR2)
IS

v_card_info typ_cr_card_nst;
i INTEGER;

BEGIN
SELECT credit_cards

INTO v_card_info
FROM customers
WHERE customer_id = p_cust_id;

IF v_card_info.EXISTS(1) THEN
-- cards exist, add more

-- fill in code here

ELSE -- no cards for this customer, construct one

-- fill in code here

END IF;
END update_card_info;

PROCEDURE display_card_info
(p_cust_id NUMBER)

IS
v_card_info typ_cr_card_nst;
i INTEGER;

BEGIN
SELECT credit_cards

INTO v_card_info
FROM customers
WHERE customer_id = p_cust_id;

-- fill in code here to display the nested table
-- contents

END display_card_info;
END credit_card_pkg; -- package body
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-45

Practice 3 (continued)
Using Collections (continued)

6. Test your package with the following statements and output:

EXECUTE credit_card_pkg.display_card_info(120)
Customer has no credit cards.
PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.update_card_info –
(120, 'Visa', 11111111)

PL/SQL procedure successfully completed.

SELECT credit_cards
FROM customers
WHERE customer_id = 120;

CREDIT_CARDS(CARD_TYPE, CARD_NUM)

TYP_CR_CARD_NST(TYP_CR_CARD('Visa', 11111111))

EXECUTE credit_card_pkg.display_card_info(120)
Card Type: Visa / Card No: 11111111
PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.update_card_info –
(120, 'MC', 2323232323)

PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.update_card_info –
(120, 'DC', 4444444)

PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.display_card_info(120)
Card Type: Visa / Card No: 11111111
Card Type: MC / Card No: 2323232323
Card Type: DC / Card No: 4444444
PL/SQL procedure successfully completed.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 3-46

Practice 3 (continued)
Using Collections (continued)

7. Write a SELECT statement against the credit_cards column to unnest the data. Use
the TABLE expression.

For example, if the SELECT statement returns:

SELECT credit_cards
FROM customers
WHERE customer_id = 120;

CREDIT_CARDS(CARD_TYPE, CARD_NUM)
--
TYP_CR_CARD_NST(TYP_CR_CARD('Visa', 11111111),

TYP_CR_CARD('MC', 2323232323), TYP_CR_CARD('DC', 4444444))

then rewrite it using the TABLE expression so the results look like:

-- Use the table expression so that the result is:
CUSTOMER_ID CUST_LAST_NAME CARD_TYPE CARD_NUM
----------- --------------- ------------- -----------

120 Higgins Visa 11111111
120 Higgins MC 2323232323
120 Higgins DC 4444444

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

Advanced Interface Methods

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-2

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Execute external C programs from PL/SQL
• Execute Java programs from PL/SQL

Objectives
In this lesson, you learn how to implement an external C routine from PL/SQL code and how to
incorporate Java code into your PL/SQL programs.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-3

Copyright © 2004, Oracle. All rights reserved.

Calling External Procedures from PL/SQL

With external procedures, you can make “callouts”
and, optionally, “callbacks” through PL/SQL.

PL/SQL
subprogram

DECLARE

BEGIN

EXCEPTION

END;

External
procedure

Java class
method

C routine

External Procedures: Overview
An external procedure (also called an external routine) is a routine stored in a dynamic link
library (DLL), shared object (.so file in UNIX), or libunit in the case of a Java class method,
that can perform special purpose processing. You publish the routine with the base language and
then call it to perform special purpose processing. You call the external routine from within
PL/SQL or SQL. With C, you publish the routine through a library schema object, which is
called from PL/SQL, that contains the compiled library file name that is stored on the operating
system. With Java, publishing the routine is accomplished through creating a class libunit.
A callout is a call to the external procedure from your PL/SQL code.
A callback occurs when the external procedure calls back to the database to perform SQL
operations. If the external procedure is to execute SQL or PL/SQL, it must “call back” to the
database server process to get this work done.
An external procedure enables you to:

• Move computation-bound programs from the client to the server where they execute faster
(because they avoid the round trips entailed in across-network communication)

• Interface the database server with external systems and data sources
• Extend the functionality of the database itself

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-4

Copyright © 2004, Oracle. All rights reserved.

Benefits of External Procedures

• External procedures integrate the strength and
capability of different languages to give
transparent access to these routines from within
the database.

• Extensibility: Provides functionality in the
database that is specific to a particular
application, company, or technological area

• Reusability: Can be shared by all users on a
database, as well as moved to other databases or
computers, providing standard functionality with
limited cost in development, maintenance, and
deployment

Benefits of External Procedures
If you use the external procedure call, you can invoke an external routine by using a PL/SQL
program unit. Additionally, you can integrate the powerful programming features of 3GLs with
the ease of data access of SQL and PL/SQL commands.
You can extend the database and provide backward compatibility. For example, you can invoke
different index or sorting mechanisms as an external procedure to implement data cartridges.
Example
A company has very complicated statistics programs written in C. The customer wants to access
the data stored in an Oracle database and pass the data into the C programs. After the execution
of the C programs, depending on the result of the evaluations, data is inserted into the
appropriate Oracle database tables.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-5

Copyright © 2004, Oracle. All rights reserved.

DECLARE

BEGIN

EXCEPTION

END;

PL/SQL
subprogram

Alias
library

External C Procedure Components

Shared library
or directory

extproc
process

External
procedure

User
process

Listener
process

External C Procedure Components
• External procedure: A unit of code written in C
• Shared library: An operating system file that stores the external procedure
• Alias library: A schema object that represents the operating system shared library
• PL/SQL subprograms: Packages, procedures, or functions that define the program unit

specification and mapping to the PL/SQL library
• extproc process: A session-specific process that executes external procedures
• Listener process: A process that starts the extproc process and assigns it to the process

executing the PL/SQL subprogram

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-6

Copyright © 2004, Oracle. All rights reserved.

DECLARE

BEGIN

EXCEPTION

END;

PL/SQL
subprogram

1

BEGIN
myproc

2
3

4

User
process

How PL/SQL Calls a C External Procedure

5

6
7

Listener
process

External
procedure

extproc
process

Shared library

Alias
library

How an External C Procedure Is Called
1. The user process invokes a PL/SQL program.
2. The server process executes a PL/SQL subprogram, which looks up the alias library.
3. The PL/SQL subprogram passes the request to the listener.
4. The listener process spawns the extproc process. The extproc process remains active

throughout your Oracle session until you log off.
5. The extproc process loads the shared library.
6. The extproc process links the server to the external file and executes the external

procedure.
7. The data and status are returned to the server.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-7

Copyright © 2004, Oracle. All rights reserved.

The extproc Process

• The extproc process services the execution of
external procedures for the duration of the
session until the user logs off.

• Each session uses a different extproc process to
execute external procedures.

• The listener must be configured to allow the
server to be associated to the extproc process.

• The listener must be on the same machine as the
server.

The extproc Process
The extproc process performs the following actions:

• Converts PL/SQL calls to C calls:
- Loads the dynamic library

• Executes the external procedures:
- Raises exceptions if necessary
- Converts C back to PL/SQL
- Sends arguments or exceptions back to the server process

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-8

Copyright © 2004, Oracle. All rights reserved.

The Listener Process

listener.ora

tnsnames.ora

PL/SQL
subprogram

Alias
library

Listener
process

External
procedure Shared library

DECLARE

BEGIN

EXCEPTION

END;
extproc
process

The Listener Process
When the Oracle server executes the external procedure, the request is passed to the listener
process, which spawns an extproc process that executes the call to the external procedure.
This listener returns the information to the server process. A single extproc process is created
for each session. The listener process starts the extproc process. The external procedure
resides in a dynamic library. The Oracle Server 10g runs the extproc process to load the
dynamic library and to execute the external procedure.
3GL Call Dependencies: Example
Libraries are objects with the following dependencies. Given library L1 and procedure P1, which
depends on L1, when procedure P1 is executed, library L1 is loaded, and the corresponding
external library is dynamically loaded. P1 can now use the external library handle and call the
appropriate external functions.
If L1 is dropped, then P1 is invalidated and needs to be recompiled.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-9

Copyright © 2004, Oracle. All rights reserved.

Development Steps for
External C Procedures

1. Create and compile the external procedure in 3GL.
2. Link the external procedure with the shared library

at the operating system level.
3. Create an alias library schema object to map to the

operating system’s shared library.
4. Grant execute privileges on the library.
5. Publish the external C procedure by creating the

PL/SQL subprogram unit specification, which
references the alias library.

6. Execute the PL/SQL subprogram that invokes the
external procedure.

Development Steps for External C Procedures
Steps 1 and 2 will vary according to the operating system. Consult your operating system or the
compiler documentation. After those steps are completed, you need to create an alias library
schema object that identifies the operating system’s shared library within the server. Any user
who needs to execute the C procedure requires execute privileges on the library. Within your
PL/SQL code, you map the C arguments to PL/SQL parameters, and lastly, execute your
PL/SQL subprogram that invokes the external routine.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-10

Copyright © 2004, Oracle. All rights reserved.

1. Varies for each operating system; consult
documentation.

2. Use the CREATE LIBRARY statement to create an
alias library object.

3. Grant the EXECUTE privilege on the alias library.

Development Steps for
External C Procedures

CREATE OR REPLACE LIBRARY library_name IS|AS

'file_path';

GRANT EXECUTE ON library_name TO

user|ROLE|PUBLIC;

Create the Alias Library
An alias library is a database object that is used to map to an external shared library. Any
external procedure that you want to use needs to be stored in a dynamic link library (DLL) or
shared object library (SO) operating system file. The DBA controls access to the DLL or SO
files by using the CREATE LIBRARY statement to create a schema object called an alias
library, that represents the external file. The DBA needs to give you EXECUTE privileges on the
library object so that you can publish the external procedure and then call it from a PL/SQL
program.
Steps

1, 2. Steps 1 and 2 will vary for each operating system. Consult your operating system or the
compiler documentation.

3. Create an alias library object by using the CREATE LIBRARY command:
CREATE OR REPLACE LIBRARY c_utility
AS '$ORACLE_HOME/bin/calc_tax.so';

The example shows the creation of a database object called c_utility, which references
the location of the file and the name of the operating system file, calc_tax.so.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-11

Create the Alias Library (continued)
4. Grant the EXECUTE privilege on the library object:

SQL> GRANT EXECUTE ON c_utility TO OE;

5. Publish the external C routine.
6. Call the external C routine from PL/SQL.

Dictionary Information
The alias library definitions are stored in the USER_LIBRARIES and ALL_LIBRARIES data
dictionary views.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-12

Copyright © 2004, Oracle. All rights reserved.

Development Steps for
External C Procedures

Publish the external procedure in PL/SQL through call
specifications:
• The body of the subprogram contains the external

routine registration.
• The external procedure runs on the same

machine.
• Access is controlled through the alias library.

Library

External routine
within the
procedure

Method to Access a Shared Library Through PL/SQL
You can access a shared library by specifying the alias library in a PL/SQL subprogram. The
PL/SQL subprogram then calls the alias library.

• The body of the subprogram contains the external procedure registration.
• The external procedure runs on the same machine.
• Access is controlled through the alias library.

You can publish the external procedure in PL/SQL by:
• Identifying the characteristics of the C procedure to the PL/SQL program
• Accessing the library through PL/SQL

The package specification does not require any changes. You do not need to have definitions for
the external procedure.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-13

Copyright © 2004, Oracle. All rights reserved.

The Call Specification

Call specifications enable:
• Dispatching the appropriate C or Java target

procedure
• Data type conversions
• Parameter mode mappings
• Automatic memory allocation and cleanup
• Purity constraints to be specified, where

necessary, for packaged functions that are called
from SQL

• Calling Java methods or C procedures from
database triggers

• Location flexibility

The Call Specification
The current way to publish external procedures is through call specifications. The call
specification enables you to call external routines from other languages. Although the
specification is designed for intercommunication between SQL, PL/SQL, C, and Java, it is
accessible from any base language that can call these languages.
To use an already existing program as an external procedure, load, publish, and then call it.
Call specifications can be specified in any of the following locations:

• Stand-alone PL/SQL procedures and functions
• PL/SQL package specifications
• PL/SQL package bodies
• Object type specifications
• Object type bodies

Note: For functions that already have the pragma RESTRICT_REFERENCES, use the TRUST
option. The SQL engine cannot analyze those programs to determine if they are free from side
effects. The TRUST option makes it easier to call the Java and C procedures.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-14

Copyright © 2004, Oracle. All rights reserved.

The Call Specification

• Identify the external body within a PL/SQL
program to publish the external C procedure.

• The external body contains the external C
procedure information.

CREATE OR REPLACE FUNCTION function_name
(parameter_list)
RETURN datatype
regularbody | externalbody

END;

IS|AS LANGUAGE C
LIBRARY libname
[NAME C_function_name]
[CALLING STANDARD C | PASCAL]
[WITH CONTEXT]
[PARAMETERS (param_1, [param_n]);

Publishing an External C Routine
You create the PL/SQL procedure or function and use the IS|AS LANGUAGE C to publish the
external C procedure. The external body contains the external routine information.
Syntax Definitions

where: LANGUAGE The language in which the external
routine was written (defaults to C)

 LIBRARY libname Name of the library database object
 NAME

"C_function_name"
Represents the name of the C function; if
omitted, the external procedure name
must match the name of the PL/SQL
subprogram

 CALLING STANDARD Specifies the Windows NT calling
standard (C or Pascal) under which the
external routine was compiled (defaults to
C)

 WITH CONTEXT Specifies that a context pointer will be
passed to the external routine for

 parameters How arguments are passed to the external
routine

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-15

Copyright © 2004, Oracle. All rights reserved.

• The parameter list:

• The parameter list element:

parameter_list_element
[, parameter_list_element]

{ formal_parameter_name [indicator]
| RETURN INDICATOR
| CONTEXT }
[BY REFERENCE]
[external_datatype]

The Call Specification

The PARAMETER Clause
The foreign parameter list can be used to specify the position and the types of arguments, as well
as indicating whether they should be passed by value or by reference.
Syntax Definitions

Note: The PARAMETER clause is optional if the mapping of the parameters is done on a
positional basis, and indicators, reference, and context are not needed.

where: formal_parameter_
name [INDICATOR]

Name of the PL/SQL parameter that is
being passed to the external routine; the
INDICATOR keyword is used to map a C
parameter whose value indicates whether
the PL/SQL parameter is null

 RETURN INDICATOR Corresponds to the C parameter that
returns a null indicator for the function

 CONTEXT Specifies that a context pointer will be
passed to the external routine

 BY REFERENCE In C, you can pass IN scalar parameters
by value (the value is passed) or by
reference (a pointer to the value is
passed). Use BY REFERENCE to pass the
parameter by reference.

 External_datatype The external data type that maps to a C
data type

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-16

Copyright © 2004, Oracle. All rights reserved.

Publishing an External C Routine

Example
• Publish a C function called c_tax from a PL/SQL

function.

• The C prototype:

CREATE FUNCTION tax_amt (
x BINARY_INTEGER)
RETURN BINARY_INTEGER
AS LANGUAGE C
LIBRARY c_utility
NAME "c_tax";

/

int c_tax (int x_val);

Example
You have an external C function called c_tax that takes in one argument, the total sales
amount. The function returns the tax amount calculated at 8%. The prototype for your c_tax
function follows:

int c_tax (int x_val);

To publish the c_tax function in a stored PL/SQL function, use the AS LANGUAGE C clause
within the function definition. The NAME identifies the name of the C function. Double quotation
marks are used to preserve the case of the function defined in the C program. The LIBRARY
identifies the library object that locates where the C file is. The PARAMETERS clause is not
needed in this example because the mapping of the parameters is done on a positional basis.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-17

Copyright © 2004, Oracle. All rights reserved.

Executing the External Procedure

1. Create and compile the external procedure in 3GL.
2. Link the external procedure with the shared library

at the operating system level.
3. Create an alias library schema object to map to the

operating system’s shared library.
4. Grant execute privileges on the library.
5. Publish the external C procedure by creating the

PL/SQL subprogram unit specification, which
references the alias library.

6. Execute the PL/SQL subprogram that invokes the
external procedure.

Executing the External Procedure: Example
Call the external C procedure within a PL/SQL block:

DECLARE
CURSOR cur_orders IS

SELECT order_id, order_total
FROM orders;

v_tax NUMBER(8,2);
BEGIN

FOR order_record IN cur_orders
LOOP

v_tax := tax_amt(order_record.order_total);
DBMS_OUTPUT.PUT_LINE('Total tax: ' || v_tax);

END LOOP;
END;

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-18

Copyright © 2004, Oracle. All rights reserved.

Overview of Java

The Oracle database can store Java classes and Java
source, which:
• Are stored in the database as procedures,

functions, or triggers
• Run inside the database
• Manipulate data

Java Overview
The Oracle database can store Java classes (.class files) and Java source code (.java files)
and execute them inside the database, as stored procedures and triggers. These classes can
manipulate data, but cannot display GUI elements such as AWT or Swing components. Running
Java inside the database helps these Java classes to be called many times and manipulate large
amounts of data, without the processing and network overhead that comes with running on the
client machine.
You must write these named blocks and then define them by using the loadjava command or
the SQL CREATE FUNCTION, CREATE PROCEDURE, CREATE TRIGGER, or CREATE
PACKAGE statements.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-19

Copyright © 2004, Oracle. All rights reserved.

How PL/SQL Calls a Java Class Method

libunits

Java class
/home/java/bin/Agent.class

1

3

Java

Virtual

Machine

2CREATE
JAVA

4

Calling a Java Class Method Using PL/SQL
The command-line utility loadjava uploads Java binaries and resources into a system-
generated database table. It then uses the CREATE JAVA statement to load the Java files into
RDBMS libunits. You can upload Java files from file systems, Java IDEs, intranets, or the
Internet.
When the CREATE JAVA statement is invoked, the Java Virtual Machine library manager on
the server loads Java binaries and resources from local BFILEs or LOB columns into RDBMS
libunits. Libunits can be considered analogous to DLLs written in C, although they map one-to-
one with Java classes, whereas DLLs can contain more than one routine.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-20

Copyright © 2004, Oracle. All rights reserved.

Development Steps for
Java Class Methods

1. Upload the Java file.
2. Publish the Java class method by creating the

PL/SQL subprogram unit specification that
references the Java class methods.

3. Execute the PL/SQL subprogram that invokes the
Java class method.

Publish Execute

Steps for Using Java Class Methods
Similar to using external C routines, the following steps are required to complete the setup
before executing the Java class method from PL/SQL.

1. Upload the Java file. This takes an external Java binary file and stores the Java code in the
database.

2. Publish the Java class method by creating the PL/SQL subprogram unit specification that
references the Java class methods.

3. Execute the PL/SQL subprogram that invokes the Java class method.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-21

Copyright © 2004, Oracle. All rights reserved.

Loading Java Class Methods

1. Upload the Java file.
– At the operating system, use the loadjava

command-line utility to load either the Java class
file or the Java source file.

• To load the Java class file, use:

• To load the Java source file, use:

– If you load the Java source file, you do not need to
load the Java class file.

>loadjava –user oe/oe Factorial.class

>loadjava –user oe/oe Factorial.java

Loading Java Class Methods
Java classes and their methods are stored in RDBMS libunits in which you can load Java
sources, binaries, and resources.
Use the loadjava command-line utility to load and resolve the Java classes. Using the
loadjava utility, you can upload a Java source, class, and resource files into an Oracle
database, where they are stored as Java schema objects. You can run loadjava from the
command line or from an application.
After the file is loaded, it is visible in the data dictionary views.

SELECT object_name, object_type FROM user_objects
WHERE object_type like 'J%';
OBJECT_NAME OBJECT_TYPE
------------------------------ ------------------------
Factorial JAVA CLASS
SELECT text FROM user_source WHERE name = 'Factorial';
TEXT

public class Factorial {

public static int calcFactorial (int n) {
if (n == 1) return 1;
else return n * calcFactorial (n - 1) ;

}}

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-22

Copyright © 2004, Oracle. All rights reserved.

Publishing a Java Class Method

2. Publish the Java class method by creating the
PL/SQL subprogram unit specification that
references the Java class methods.
– Identify the external body within a PL/SQL program

to publish the Java class method.
– The external body contains the name of the Java

class method.

{IS | AS} LANGUAGE JAVA
NAME 'method_fullname (java_type_fullname

[, java_type_fullname]...)
[return java_type_fullname]';

CREATE OR REPLACE
{ PROCEDURE procedure_name [(parameter_list)]
| FUNCTION function_name [(parameter_list]...)]

RETURN datatype}
regularbody | externalbody

END;

Publishing a Java Class Method
The publishing of Java class methods is specified in the AS LANGUAGE clause. This call
specification identifies the appropriate Java target routine, data type conversions, parameter
mode mappings, and purity constraints. You can publish value-returning Java methods as
functions and void Java methods as procedures.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-23

Copyright © 2004, Oracle. All rights reserved.

Publishing a Java Class Method

• Example:

• Java method definition:

CREATE OR REPLACE FUNCTION plstojavafac_fun
(N NUMBER)
RETURN NUMBER
AS
LANGUAGE JAVA
NAME 'Factorial.calcFactorial
(int) return int';

public class Factorial {
public static int calcFactorial (int n) {
if (n == 1) return 1;
else return n * calcFactorial (n - 1) ;

}
}

Example
If you want to publish a Java method named calcFactorial that returns the factorial of its
argument, as explained in the preceding example:

• The NAME clause string uniquely identifies the Java method
• The PL/SQL function shown corresponds with regard to the parameters
• The parameter named N corresponds to the int argument

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-24

Copyright © 2004, Oracle. All rights reserved.

Executing the Java Routine

1. Upload the Java file.
2. Publish the Java class method by creating the

PL/SQL subprogram unit specification that
references the Java class methods.

3. Execute the PL/SQL subprogram that invokes the
Java class method.

Example (continued)
You can call the calcFactorial class method by using the following command:

EXECUTE DBMS_OUTPUT.PUT_LINE(plstojavafac_fun (5))
120

Alternatively, to execute a SELECT statement from the DUAL table:
SELECT plstojavafac_fun (5)
FROM dual;

PLSTOJAVAFAC_FUN(5)

120

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-25

Copyright © 2004, Oracle. All rights reserved.

Creating Packages for Java Class Methods

CREATE OR REPLACE PACKAGE BODY Demo_pack
AS
PROCEDURE plsToJ_InSpec_proc
(x BINARY_INTEGER, y VARCHAR2, z DATE)
IS LANGUAGE JAVA
NAME 'pkg1.class4.J_InSpec_meth

(int, java.lang.String, java.sql.Date)';

CREATE OR REPLACE PACKAGE Demo_pack
AUTHID DEFINER
AS
PROCEDURE plsToJ_InSpec_proc
(x BINARY_INTEGER, y VARCHAR2, z DATE)

END;

Creating Packages for Java Class Methods
These examples create a package specification and body Demo_pack.
The package is a container structure. It defines the specification of the PL/SQL procedure named
plsToJ_InSpec_proc.
Note that you cannot tell whether this procedure is implemented by PL/SQL or by way of an
external procedure. The details of the implementation appear only in the package body in the
declaration of the procedure body.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-26

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use external C routines and call them from your

PL/SQL programs
• Use Java methods and call them from your

PL/SQL programs

Summary
You can embed calls to external C programs from your PL/SQL programs by publishing the
external routines in a PL/SQL block. You can take external Java programs and store them in the
database to be called from PL/SQL functions, procedures, and triggers.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-27

Copyright © 2004, Oracle. All rights reserved.

Practice Overview

This practice covers the following topics:
• Writing programs to interact with C routines
• Writing programs to interact with Java code

Practice Overview
In this practice, you will write two PL/SQL programs. One program calls an external C routine
and the second program calls a Java routine.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-28

Practice 4
1. An external C routine definition is created for you. The .c file is stored in the

$HOME/labs directory on the database server. This function returns the tax amount based
on the total sales figure passed to the function as a parameter. The name of the .c file is
named calc_tax.c. The shared object file name is calc_tax.so. The function is
defined as:

calc_tax(n)
int n;
{
int tax;
tax=(n*8)/100;
return(tax);

}

a. Create calc_tax.so file by using the following command:
cc –shared –o calc_tax.so calc_tax.c

b. Copy the file calc_tax.so to $ORACLE_HOME/bin directory using the following
command:
cp calc_tax.so $ORACLE_HOME/bin

c. Create the library object. Name the library object c_code and define its path as:
CREATE OR REPLACE LIBRARY c_code
AS '$ORACLE_HOME/bin/calc_tax.so';
/

d. Publish the external C routine.
Create a function named call_c. This function has one numeric parameter and it
returns a binary integer. Identify the AS LANGUAGE, LIBRARY, and NAME clauses
of the function.

e. Create a procedure to call the call_c function created in the previous step.
Name this procedure C_OUTPUT. It has one numeric parameter. Include a
DBMS_OUTPUT.PUT_LINE statement so that you can view the results returned
from your C function.

f. Set serveroutput ON and execute the C_OUTPUT procedure.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 4-29

Practice 4 (continued)
2. A Java method definition is created for you. The method accepts a 16-digit credit card

number as the argument and returns the formatted credit card number (4 digits followed by
a space). The name of the .class file is FormatCreditCardNo.class. The method
is defined as:

public class FormatCreditCardNo
{
public static final void formatCard(String[] cardno)
{
int count=0, space=0;
String oldcc=cardno[0];
String[] newcc= {""};
while (count<16)
{
newcc[0]+= oldcc.charAt(count);
space++;
if (space ==4)
{ newcc[0]+=" "; space=0; }
count++;
}
cardno[0]=newcc [0];
}
}

a. Load the .java source file.

b. Publish the Java class method by defining a PL/SQL procedure named CCFORMAT.
This procedure accepts one IN OUT parameter.

Use the following definition for the NAME parameter:
NAME 'FormatCreditCardNo.formatCard(java.lang.String[])';

c. Execute the Java class method. Define one SQL*Plus variable, initialize it, and use
the EXECUTE command to execute the CCFORMAT procedure.

EXECUTE ccformat(:x);

PRINT x
X

1234 5678 1234 5678

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

PL/SQL Server Pages

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-2

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Embed PL/SQL code in Web pages (PL/SQL server

pages)
• Explain the format of a PL/SQL server page
• Write the code and content for the PL/SQL

server page
• Load the PL/SQL server page into the database as

a stored procedure
• Run a PL/SQL server page via a URL
• Debug PL/SQL server page problems

Objectives
In this lesson, you learn about the powerful features of PL/SQL Server Pages (PSP). Using PSP,
you can embed PL/SQL in an HTML Web page.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-3

Copyright © 2004, Oracle. All rights reserved.

PSP: Uses and Features

• Uses:
– If you have a large body of HTML, and want to

include dynamic content or make it the front end of
a database application

– If most work is done using HTML authoring tools
• Features:

– You can include JavaScript or other client-side
script code in a PL/SQL server page.

– PSP uses the same script tag syntax as JavaServer
Pages (JSP), to make it easy to switch back and
forth.

– Processing is done on the server.
– The browser receives a plain HTML page with no

special script tags.

PSP Uses and Features
You can produce HTML pages with dynamic content in several ways. One method is to create
PSP. This is useful when you have a large body of HTML, and want to include dynamic content
or make it the front end of a database application. If most of the work is done through an HTML
authoring tool, PSP is more efficient.
You can also use the PL/SQL Web Toolkit to generate PSPs. This toolkit provides packages such
as OWA, htp, and htf that are designed for generating Web pages. For more information, take
the Oracle AS 10g: Develop Web Pages with PL/SQL course. This is useful when there is a large
body of PL/SQL code that produces formatted output. If you use authoring tools that produce
PL/SQL code for you, such as the page-building wizards in Oracle Application Server Portal,
then it might be less convenient to use PSP.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-4

Copyright © 2004, Oracle. All rights reserved.

Format of the PSP File

• The file must have a .psp extension.
• The .psp file can contain text, tags, PSP

directives, declarations, and scriptlets.
• Typically, HTML provides the static portion of the

page, and PL/SQL provides the dynamic content.

Test.psp

Format of the PSP File
It is easier to maintain the PSP file if you keep all your directives and declarations together near
the beginning of a PL/SQL server page. To share procedures, constants, and types across
different PL/SQL server pages, compile them into a separate package in the database by using a
plain PL/SQL source file. Although you can reference packaged procedures, constants, and types
from PSP scripts, the PSP scripts can only produce stand-alone procedures, not packages.
Page Directive
Specifies characteristics of the PL/SQL server page:

• What scripting language it uses
• What type of information (MIME type) it produces
• What code to run to handle all uncaught exceptions. This might be an HTML file with a

friendly message, renamed to a .psp file.
Syntax:

<%@ page [language="PL/SQL"]
contentType="content type string"] [errorPage="file.psp"] %>

Procedure Directive
Specifies the name of the stored procedure produced by the PSP file. By default, the name is the
file name without the .psp extension.

Syntax:
<%@ plsql procedure="procedure name" %>

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-5

Format of the PSP File (continued)
Parameter Directive
Specifies the name, and optionally the type and default, for each parameter expected by the PSP
stored procedure.

Syntax:
<%@ plsql parameter="parameter name"
[type="PL/SQL type"] [default="value"] %>

If the parameter data type is CHARACTER, put single quotation marks around the default value,
with double quotation marks surrounding the entire default value.
Include Directive
Specifies the name of a file to be included at a specific point in the PSP file. The file must have
an extension other than .psp. It can contain HTML, PSP script elements, or a combination of
both. The name resolution and file inclusion happens when the PSP file is loaded into the
database as a stored procedure, so any changes to the file after that are not reflected when the
stored procedure is run.

Syntax:
<%@ include file="path name" %>

Declaration Block
Declares a set of PL/SQL variables that are visible throughout the page, not just within the next
BEGIN/END block. This element typically spans multiple lines, with individual PL/SQL
variable declarations ended by semicolons.

Syntax:
<%! PL/SQL declaration; [PL/SQL declaration;] ... %>

Code Block (Scriptlets)
Executes a set of PL/SQL statements when the stored procedure is run. This element typically
spans multiple lines, with individual PL/SQL statements ended by semicolons. The statements
can include complete blocks, or can be the bracketing parts of IF/THEN/ELSE or
BEGIN/END blocks. When a code block is split into multiple scriptlets, you can put HTML or
other directives in the middle, and those pieces are conditionally executed when the stored
procedure is run.

Syntax:
<% PL/SQL statement; [PL/SQL statement;] ... %>

Expression Block
Specifies a single PL/SQL expression, such as a string, an arithmetic expression, a function call,
or a combination of those things. The result is substituted as a string at that spot in the HTML
page that is produced by the stored procedure. You do not need to end the PL/SQL expression
with a semicolon.

Syntax:
<%= PL/SQL expression %>

Note: To identify a file as a PL/SQL server page, include a
<%@ page language="PL/SQL" %> directive somewhere in the file. This directive is for
compatibility with other scripting environments.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-6

Copyright © 2004, Oracle. All rights reserved.

http://sitename/schemaname/pspname?parmname1=

value1&parmname2=value2

1. Create the PSP.
2. Load the PSP into the database as a stored

procedure.

3. Run the PSP through a URL.

loadpsp [-replace]

-user username/password[@connect_string]
[include_file_name ...] [error_file_name]

psp_file_name ...

Development Steps for PSP

Steps to Create a PSP
Step 1
Create an HTML page, embedding the PL/SQL code in the HTML page.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-7

Copyright © 2004, Oracle. All rights reserved.

<%@ page language="PL/SQL" %>
<%@ plsql procedure="show_table" %>
<% –- Inventories Table Contents -- %>
<HTML>
<HEAD><TITLE>Show Contents of Inventories </TITLE></HEAD>
<BODY>
<p><font face="Arial, Helvetica, Tahoma"
size="4">INVENTORIES TABLE: </p>
<p><%
declare
dummy boolean;
begin
dummy := owa_util.tableprint('INVENTORIES','border');
end;
%> </p>
<p> </p><p> </p><p> </p></BODY>
</HTML>

Development Steps for PSP

Creating the PSP:
Page directive
Procedure directive

Scriptlet

Comment

Creating the PSP
First, create an HTML page, embedding the PL/SQL code in the HTML page. In this example,
the contents of the INVENTORIES table are displayed in a Web page.
The page directive identifies the scripting language. The procedure directive identifies that a
procedure named show_table will be created and stored in the database to represent this
HTML page. The scriptlet executes a set of PL/SQL statements when the stored procedure is run.
The result is substituted as a string at that spot in the HTML page that is produced by the stored
procedure. The owa_util.tableprint procedure prints out the contents of a database table
that is identified to the procedure through the first parameter.
Note: owa_util.tableprint is part of the PL/SQL Web Toolkit and is installed in the
SYS schema.
Include Comments
To put a comment in the HTML portion of a PL/SQL server page, for the benefit of people
reading the PSP source code, use the following syntax:

Syntax:
<%-- Comment text --%>

These comments do not appear in the HTML output from the PSP.
To create a comment that is visible in the HTML output, place the comment in the HTML
portion and use the regular HTML comment syntax:

Syntax:
<!-- Comment text -->

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-8

Copyright © 2004, Oracle. All rights reserved.

>loadpsp –replace –user oe/oe
banner.inc error.psp show_table.psp
"banner.inc": uploaded.
"error.psp": procedure "error" created.
"show_table.psp" : procedure "show_table" created.
>

• Loading the PSP into the database from the
operating system:

• Optionally include other file names and the error
file name:

>loadpsp –replace –user oe/oe show_table.psp
"show_table.psp" : procedure "show_table" created.
>

Development Steps for PSP

Loading the PSP
Step 2
In the second step, you load one or more PSP files into the database as stored procedures. Each
.psp file corresponds to one stored procedure. To perform a “CREATE OR REPLACE” on the
stored procedures, include the -replace flag.
The loader logs on to the database using the specified username, password, and connect string.
The stored procedures are created in the corresponding schema.
In the first example:

• The stored procedure is created in the database. The database is accessed as user oe with
password oe, both when the stored procedure is created and when it is executed.

• show_table.psp contains the main code and text for the Web page.
In the second example:

• The stored procedure is created in the database. The database is accessed as user oe with
password oe, both to create the stored procedure and when the stored procedure is
executed.

• banner.inc is a file containing boilerplate text and script code, that is included by the
.psp file. The inclusion happens when the PSP is loaded into the database, not when the
stored procedure is executed.

• error.psp is a file containing code or text that is processed when an unhandled
exception occurs, to present a friendly page rather than an internal error message.

• show_table.psp contains the main code and text for the Web page.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-9

Loading the PSP (continued)
Include the names of all the include files (whose names do not have the .psp extension) before
the names of the PL/SQL server pages (whose names have the .psp extension). Also include
the name of the file specified in the errorPage attribute of the page directive. These file
names on the loadpsp command line must exactly match the names specified within the PSP
include and page directives, including any relative pathname such as ../include/.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-10

Copyright © 2004, Oracle. All rights reserved.

SQL> SELECT text
2 FROM user_source
3 WHERE name = 'SHOW_TABLE';

TEXT

PROCEDURE show_table AS
BEGIN NULL;
...
declare
dummy boolean;
begin
dummy := owa_util.tableprint('INVENTORIES','border');
end;
...
23 rows selected.

Development Steps for PSP

The show_table procedure is stored in the data
dictionary views.

Loading the PSP (continued)
After the loadpsp utility is run, the procedure is created and stored in the database.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-11

Copyright © 2004, Oracle. All rights reserved.

Development Steps for PSP

Running the PSP through a URL:

Running the PSP
Step 3
For the third step, run the PSP in a browser. Identify the HTTP URL through a Web browser or
some other Internet-aware client program. The virtual path in the URL depends on the way the
Web gateway is configured. The name of the stored procedure is placed at the end of the virtual
path.
Using METHOD=GET, the URL may look like this:

http://sitename/DAD/pspname?parmname1=value1&parmname2=value2

Using METHOD=POST, the URL does not show the parameters:
http://sitename/DAD/pspname

The METHOD=GET format is more convenient for debugging and allows visitors to pass exactly
the same parameters when they return to the page through a bookmark.
The METHOD=POST format allows a larger volume of parameter data, and is suitable for passing
sensitive information that should not be displayed in the URL.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-12

Copyright © 2004, Oracle. All rights reserved.

• To print the results of a multirow query,
use a loop:

• Alternatively, use OWA_UTIL.TABLEPRINT or
OWA_UTIL.CELLSPRINT procedures from the
PL/SQL Web Toolkit.

<% FOR item IN (SELECT * FROM some_table) LOOP %>
<TR>
<TD><%= item.col1 %></TD>
<TD><%= item.col2 %></TD>
</TR>

<% END LOOP; %>

Printing the Table Using a Loop

Printing the Content of a Table
You can iterate through each row of the result set, printing the appropriate columns using HTML
list or table tags. Following is an example of a list:

<%@ page language="PL/SQL" %>
<%@ plsql procedure="show_customers" %>
<HTML>
<HEAD><TITLE>Show Contents of Customers (using a loop)
</TITLE></HEAD>
<BODY>

<% for item in (select customer_id, cust_first_name,

credit_limit, cust_email
from customers order by credit_limit) loop %>

ID = <%= item.customer_id %>

Name = <%= item.cust_first_name %>

Credit = <%= item.credit_limit %>

Email = <I><%= item.cust_email %></I>

<% end loop; %>

</BODY>
</HTML>

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-13

Copyright © 2004, Oracle. All rights reserved.

http://edidr5p0.us.oracle.com/DAD
/show_customers_hc?mincredit=3000

• Include the parameter directive in the .psp file.
– Syntax:

– Example:

• Assign the parameter a value through the URL call:

<%@ plsql parameter="mincredit" type="NUMBER"
default="3000" %>

<%@ plsql parameter="parameter name"
[type="PL/SQL type"] [default="value"] %>

Specifying a Parameter

Specifying a Parameter
You can pass parameters to the PSP by identifying the parameter name and value in the URL
call.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-14

Specifying a Parameter (continued)
The example below creates a parameter named mincredit. There is also some conditional
processing to highlight values that are greater than a specified price.

<%@ page language="PL/SQL" %>
<%@ plsql procedure="show_customers_hc" %>
<%@ plsql parameter="mincredit" type="NUMBER" default=“3000"
%>
<%! color varchar2(7); %>
<HTML>
<HEAD><TITLE>Show Customers Greater Than Specified Credit
Limit</TITLE></HEAD>
<BODY>
<P>This report shows all customers, highlighting those having
credit limit is greater than <%= mincredit %>.
<TABLE BORDER>
<TR>
<TH>ID</TH>
<TH>Name</TH>
<TH>Credit</TH>
<TH>Email </TH>
</TR>
<%
for item in (select * from customers

order by credit_limit desc) loop
if item.credit_limit > mincredit then

color := '#white';
else

color := '#green';
end if;

%>
<TR BGCOLOR="<%= color %>">
<TD><BIG><%= item.customer_id %></BIG></TD>
<TD><BIG><%= item.cust_first_name %></BIG></TD>
<TD><BIG><%= item.credit_limit %></BIG></TD>
<TD><%= item.cust_email %></TD>
</TR>
<% end loop; %>
</TABLE>
</BODY>
</HTML>

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-15

Copyright © 2004, Oracle. All rights reserved.

Specifying a Parameter

Specifying a Parameter (continued)
You passed mincredit=4000 as the parameter along with the URL. The output shows all the
records and highlights those having a credit limit greater than 4,000. ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-16

Copyright © 2004, Oracle. All rights reserved.

<%@ page language="PL/SQL" %>
<%@ plsql procedure="show_customer_call" %>
<%@ plsql parameter="mincredit" type="NUMBER" default=
"3000" %>
<html>
<body>
<form method="POST" action="show_customers_hc">
<p>Enter the credit limit:
<input type="text" name="mincredit">
<input type="submit" value="Submit">
</form>
</body>
</html>

1. Create an HTML form.
2. Call the PSP from the form.

Using an HTML Form to Call a PSP

1

2

Calling a PSP from an HTML Form
Create an HTML form that calls the PSP. To avoid coding the entire URL of the stored
procedure in the ACTION= attribute of the form, make the form a PSP file so that it goes
in the same directory as the PSP file it calls.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-17

Copyright © 2004, Oracle. All rights reserved.

Using an HTML Form to Call a PSP

Calling a PSP from an HTML Form (continued)
Initially, you are calling the HTML form that accepts the credit limit from the user. After
submitting the HTML form, call the PSP, which shows all the records and highlight all the
records having a credit limit greater than the value submitted by the user. ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-18

Copyright © 2004, Oracle. All rights reserved.

Debugging PSP Problems

• Code the PL/SQL syntax and PSP directive syntax
correctly. It will not compile with syntax errors.

• Run the PSP file by requesting its URL in a Web
browser. An error might indicate that the file is
not found.

• When the PSP script is run, and the results come
back to the browser, use standard debugging
techniques to check for and correct wrong output.

• Use htp.p('string') to print information to
the screen.

Debugging PSP Problems
The first step is to code PL/SQL syntax and PSP directive syntax correctly. It will not compile
with syntax errors.

• Use semicolons to terminate lines if required.
• If required, enclose a value with quotation marks. You may need to enclose a value that is

within single quotation marks (needed by PL/SQL) inside double quotation marks (needed
by PSP).

• Mistakes in the PSP directives are usually reported through PL/SQL syntax messages.
Check that your directives use the right syntax, that directives are closed properly, and that
you are using the right element (declaration, expression, or code block) depending on what
goes inside it.

• PSP attribute names are case sensitive. Most are specified in all lowercase;
contentType and errorPage must be specified as mixed-case.

Run the PSP file by requesting its URL in a Web browser.
• Request the right virtual path, depending on the way the Web gateway is configured.

Typically, the path includes the host name, optionally a port number, the schema name, and
the name of the stored procedure (with no .psp extension).

• If you use the -replace option when compiling the file, the old version of the stored
procedure is erased. You may want to test new scripts in a separate schema until they are
ready, then load them into the production schema.

• If you copied the file from another file, remember to change any procedure name directives
in the source to match the new file name.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-19

Debugging PSP Problems (continued)
• If you receive one file-not-found error, make sure to request the latest version of the page

the next time. The error page may be cached by the browser. You may need to press [Shift]
and click Reload in the browser to bypass its cache.

When the PSP script is run, and the results come back to the browser, use standard debugging
techniques to check for and correct wrong output. The tricky part is to set up the interface
between different HTML forms, scripts, and CGI programs so that all the right values are passed
into your page. The page may return an error because of a parameter mismatch.

• To see exactly what is being passed to your page, use METHOD=GET in the calling form so
that the parameters are visible in the URL.

• Make sure that the form or CGI program that calls your page passes the correct number of
parameters, and that the names specified by the NAME=attributes on the form match
the parameter names in the PSP file. If the form includes any hidden input fields, or uses
the NAME= attribute on the Submit or Reset buttons, then the PSP file must declare
equivalent parameters.

• Make sure that the parameters can be cast from string into the correct PL/SQL types. For
example, do not include alphabetic characters if the parameter in the PSP file is declared as
a NUMBER.

• Make sure that the query string of the URL consists of name-value pairs, separated by
equal signs, especially if you are passing parameters by constructing a hard-coded link to
the page.

• If you are passing a lot of parameter data, such as large strings, you may exceed the volume
that can be passed with METHOD=GET. You can switch to METHOD=POST in the calling
form without changing your PSP file.

• You can display text or variables by putting the following in your code:
htp.p(' My Var: ' || my_var);

When you run the program, the information is displayed on the screen.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-20

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Define PL/SQL server pages
• Explain the format of a PL/SQL server page
• Write the code and content for the PL/SQL

server page
• Load the PL/SQL server page into the database as

a stored procedure
• Run a PL/SQL server page via a URL
• Debug PL/SQL server page problems

Summary
You can use PL/SQL embedded in HTML and store the code as a PL/SQL server page (PSP)in
the database. The three steps for creating a PSP are:

1. Create the PSP.
2. Load the PSP into the database as a stored procedure.
3. Run the PSP in a browser.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-21

Copyright © 2004, Oracle. All rights reserved.

Practice Overview

This practice covers the following topics:
• Creating a PSP
• Loading a PSP
• Running the PSP through the browser

Practice Overview
In this practice, you write and deploy a PSP that retrieves order information. You will also write
and deploy a PSP that retrieves customer information where Customer ID is passed as a
parameter. ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 5-22

Practice 5
Note: The instructor needs to set up a DAD for the class.

1. Create a PL/SQL server page to display order information. Name the procedure as
show_orders. Display the following fields:

ORDER_ID
ORDER_MODE
CUSTOMER_ID
ORDER_STATUS
ORDER_TOTAL
TAX
SALES_REP_ID

Note: TAX should be displayed using the calc_c function created in Lesson 4.

a. Use the lab_05_01.psp file containing the HTML code. After creating the PSP,
load it from the operating system

b. Request the show_orders PSP from your browser.

2. Create a PL/SQL server page to display the following customer information:
CUSTOMER_ID
CUST_FIRST_NAME
CUST_LAST_NAME
CREDIT_LIMIT
CUST_EMAIL

a. Use the lab_05_02a.psp file containing the HTML code. Name the procedure
show_cust.

b. Use a parameter to pass CUSTOMER_ID and then display information for that
customer.

c. Use an HTML form to call the PSP. Modify the lab_05_02b.psp file and add the
necessary details to call the PSP.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

Fine-Grained Access Control

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-2

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Describe the process of fine-grained

access control
• Implement and test fine-grained access control

Objectives
In this lesson, you will learn about the security features in the Oracle Database from an
application developer’s standpoint.
For more information about these features, refer to Oracle Supplied PL/SQL Packages and Types
Reference, Oracle Label Security Administrator’s Guide, Oracle Single Sign-On Application
Developer's Guide, and Oracle Security Overview.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-3

Copyright © 2004, Oracle. All rights reserved.

Overview

Fine-grained access control:
• Enables you to enforce security through a low

level of granularity
• Restricts users to viewing only “their” information
• Is implemented through a security policy attached

to tables
• Dynamically modifies user statements to fit

the policy

Fine-Grained Access Control
Fine-grained access control enables you to build applications that enforce security rules (or
policies) at a low level of granularity. For example, you can use fine-grained access to restrict
customers who access the Oracle server to see only their own account, physicians to see only the
records of their own patients, or managers to see only the records of employees who work for
them.
When you use fine-grained access control, you create security policy functions attached to the
table or view on which you have based your application. Then, when a user enters a DML
statement on that object, the Oracle server dynamically modifies the user’s statement—
transparently to the user—so that the statement implements the correct access control.
Fine-grained access is also known as a virtual private database (VPD) because it implements
row-level security, essentially giving the user access to his or her own private database. Fine-
grained means at the individual row level.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-4

Copyright © 2004, Oracle. All rights reserved.

Identifying Fine-Grained Access Features

Table

Security
policies

SELECT

INSERT

UPDATE

SELECT

DELETE

SELECT

Features
You can use fine-grained access control to implement security rules called policies with
functions, and then associate those security policies with tables or views. The database server
automatically enforces those security policies, no matter how the data is accessed.
A security policy is a collection of rules needed to enforce the appropriate privacy and security
rules into the database itself, making it transparent to users of the data structure.
Attaching security policies to tables or views, rather than to applications, provides greater
security, simplicity, and flexibility.
You can:

• Use different policies for SELECT, INSERT, UPDATE, and DELETE statements
• Use security policies only where you need them
• Use more than one policy for each table, including building on top of base policies in

packaged applications
• Distinguish policies between different applications by using policy groups

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-5

Copyright © 2004, Oracle. All rights reserved.

How Fine-Grained Access Works

Implement the policy on the CUSTOMERS table:
“Account managers can see only their own
customers.”

Account manager 148

149

147

147

149

145

145

148

149

Id

Function:

Security
policies

1

2 3

5

...
WHERE account_mgr_id = 148
...

4

SELECT

How Fine-Grained Access Works
To implement a virtual private database so that each account manager can see only his or her
own customers, you must do the following:

1. Create a function to add a WHERE clause identifying a selection criterion to a user’s
DML statement.

2. Have the user (the account manager) enter a DML statement.
3. Implement the security policy through the function you created. The Oracle server calls the

function automatically.
4. Dynamically modify the user’s statement through the function.
5. Execute the dynamically modified statement.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-6

Copyright © 2004, Oracle. All rights reserved.

• You write a function to return the account
manager ID:

• The account manager user enters a query:

• The query is modified with the function results:
SELECT customer_id, cust_last_name, cust_email
FROM orders
WHERE account_mgr_id = (SELECT account_mgr_id

FROM customers
WHERE account_mgr_id =
SYS_CONTEXT ('userenv','session_user'));

SELECT customer_id, cust_last_name, cust_email
FROM customers;

How Fine-Grained Access Works

account_mgr_id = (SELECT account_mgr_id
FROM customers
WHERE account_mgr_id =
SYS_CONTEXT ('userenv','session_user'));

How Fine-Grained Access Works (continued)
Fine-grained access control is based on a dynamically modified statement. In the example
shown, the user enters a broad query against the CUSTOMERS table that retrieves customer
names and e-mail names for a specific account manager. The Oracle server calls the function to
implement the security policy. This modification is transparent to the user. It results in
successfully restricting access to other customers’ information, displaying only the information
relevant to the account manager.
Note: SYS_CONTEXT is a function that returns a value for an attribute. This is explained in
detail in a few pages.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-7

Copyright © 2004, Oracle. All rights reserved.

Why Use Fine-Grained Access?

To implement the business rule “Account managers
can see only their own customers,” you have three
options:

This can be difficult to administer,
especially if there are a large number of
views to track and manage.

Create views with the necessary
predicates and then create synonyms
with the same name as the table
names for these views.

This option offers the best security
without major administrative overhead
and it also ensures the complete
privacy of information

Create a VPD for each of the account
managers by creating policy
functions to generate dynamic
predicates. These predicates can then
be applied across all objects.

Does not ensure privacy enforcement
outside the application. Also, all
application code may need to be modified
in the future as business rules change.

Modify all existing application code to
include a predicate (a WHERE clause)
for all SQL statements.

CommentOption

Why Choose Fine-Grained Access?
You can implement the business rule “Account managers can see only their own customers”
through a few means. The options are listed above. By using fine-grained access, you have
security implemented without a lot of overhead.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-8

Copyright © 2004, Oracle. All rights reserved.

• An application context is used to facilitate the
implementation of fine-grained access control.

• It is a named set of attribute/value pairs
associated with a PL/SQL package.

• Applications can have their own application-
specific context.

• Users cannot change their context.

Using an Application Context

Security
policies

ValueAttribute

Context

Attached
to a

session

Associated
with a

packageSession

Implements

What Is an Application Context?
An application context:

• Is a named set of attribute/value pairs associated with a PL/SQL package
• Is attached to a session
• Enables you to implement security policies with functions and then associate them

with applications
A context is a named set of attribute/value pairs that are global to your session. You can define
an application context, name it, and associate a value to that context with a PL/SQL package.
Application context enables you to write applications that draw upon certain aspects of a user’s
session information. It provides a way to define, set, and access attributes that an application can
use to enforce access control—specifically, fine-grained access control.
Most applications contain information about the basis on which access is to be limited. In an
order entry application, for example, you would limit the customers’ to access their own orders
(ORDER_ID) and customer number (CUSTOMER_ID). Or, you may limit an account manager
(ACCOUNT_MGR_ID) to view only his or her customers. These values can be used as security
attributes. Your application can use a context to set values that are accessed within your code and
used to generate WHERE clause predicates for fine-grained access control.
An application context is owned by SYS.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-9

Copyright © 2004, Oracle. All rights reserved.

YOUR_DEFINED Context

Using an Application Context

USERENV Context

139.185.35.118IP_ADDRESS

oeSESSION_USER

oeCURRENT_SCHEMA

orclDB_NAME

ValueAttribute
System
defined:

The function
SYS_CONTEXT
returns a value
of an attribute
of a context.

SELECT SYS_CONTEXT ('USERENV', 'SESSION_USER')
FROM DUAL;

SYS_CONTEXT ('USERENV', 'SESSION_USER')
--
OE

AM145account_mgr

cus_1000customer_info

ValueAttribute
Application

defined:

Application Context
A predefined application context named USERENV is available to you. It has a predefined list of
attributes. Predefined attributes can be very useful for access control. You find the values of the
attributes in a context by using the SYS_CONTEXT function. Although the predefined attributes
in the USERENV application context are accessed with the SYS_CONTEXT function, you cannot
change them.
With the SYS_CONTEXT function, you pass the context name and the attribute name. The
attribute value is returned.
The following statement returns the name of the database being accessed:

SELECT SYS_CONTEXT ('USERENV', 'DB_NAME')
FROM DUAL;

SYS_CONTEXT('USERENV','DB_NAME')
--
ORCL

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-10

Copyright © 2004, Oracle. All rights reserved.

CREATE [OR REPLACE] CONTEXT namespace
USING [schema.]plsql_package

Creating an Application Context

• Requires the CREATE ANY CONTEXT system
privilege

• Parameters:
– namespace is the name of the context.
– schema is the name of the schema owning the

PL/SQL package.
– plsql_package is the name of the package used to

set or modify the attributes of the context. (It does
not need to exist at the time of the context creation.)

CREATE CONTEXT order_ctx USING oe.orders_app_pkg;

Context created.

Creating a Context
For fine-grained access where you want an account manager to view only his or her customers,
customers can view their own information, and sales representatives can view only their own
orders, you can create a context called ORDER_CTX and define for it the ACCOUNT_MGR,
CUST_ID, and SALE_REP attributes.
Because a context is associated with a PL/SQL package, you need to name the package that you
are tying to the context. This package does not need to exist at the time of context creation.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-11

Copyright © 2004, Oracle. All rights reserved.

Setting a Context

• Use the supplied package procedure
DBMS_SESSION.SET_CONTEXT to set a value for an
attribute within a context.

• Set the attribute value in the package associated
to the context.

DBMS_SESSION.SET_CONTEXT('context_name',
'attribute_name',
'attribute_value')

CREATE OR REPLACE PACKAGE orders_app_pkg
...
BEGIN

DBMS_SESSION.SET_CONTEXT('ORDER_CTX',
'ACCOUNT_MGR',
v_user)

...

Setting a Context
When a context is defined, you can use the DBMS_SESSION.SET_CONTEXT procedure to set
a value for an attribute within a context. The attribute is set in the package associated with the
context.

CREATE OR REPLACE PACKAGE orders_app_pkg
IS
PROCEDURE set_app_context;
END;
/
CREATE OR REPLACE PACKAGE BODY orders_app_pkg
IS
c_context CONSTANT VARCHAR2(30) := 'ORDER_CTX';
PROCEDURE set_app_context
IS

v_user VARCHAR2(30);
BEGIN
SELECT user INTO v_user FROM dual;
DBMS_SESSION.SET_CONTEXT
(c_context, 'ACCOUNT_MGR', v_user);

END;
END;
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-12

Setting a Context (continued)
In the example on the previous page, the context ORDER_CTX has the ACCOUNT_MGR attribute
set to the current user logged (determined by the USER function).
For this example, assume that users AM145, AM147, AM148, and AM149 exist. As each user
logs on and the DBMS_SESSION.SET_CONTEXT is invoked, the attribute value for that
ACCOUNT_MGR is set to the user ID.

GRANT EXECUTE ON oe.orders_app_pkg
TO AM145, AM147, AM148, AM149;

CONNECT AM145/oracle
Connected.

EXECUTE oe.orders_app_pkg.set_app_context

SELECT SYS_CONTEXT('ORDER_CTX', 'ACCOUNT_MGR') FROM dual;

SYS_CONTEXT('ORDER_CTX', 'ACCOUNT_MGR')

AM145

If you switch the user ID, the attribute value is also changed to reflect the current user.

CONNECT AM147/oracle
Connected.

EXECUTE oe.orders_app_pkg.set_app_context

SELECT SYS_CONTEXT('ORDER_CTX', 'ACCOUNT_MGR') FROM dual;

SYS_CONTEXT('ORDER_CTX', 'ACCOUNT_MGR')

AM147

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-13

Copyright © 2004, Oracle. All rights reserved.

Follow these steps:
1. Set up a driving context.

2. Create the package associated with the context
you defined in step 1. In the package:
a. Set the context.
b. Define the predicate.

3. Define the policy.
4. Set up a logon trigger to call the package at logon

time and set the context.
5. Test the policy.

CREATE OR REPLACE CONTEXT order_ctx
USING orders_app_pkg;

Implementing a Policy

Implementing a Policy
In this example, assume that the users AM145, AM147, AM148, and AM149 exist. Next, a
context and a package associated with the context is created. The package will be owned by OE.
Step 1: Set Up a Driving Context
Use the CREATE CONTEXT syntax to create a context.

CONNECT /AS sysdba

CREATE CONTEXT order_ctx USING oe.orders_app_pkg;

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-14

Copyright © 2004, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE orders_app_pkg

IS

PROCEDURE show_app_context;

PROCEDURE set_app_context;

FUNCTION the_predicate

(p_schema VARCHAR2, p_name VARCHAR2)

RETURN VARCHAR2;

END orders_app_pkg; -- package spec

/

Step 2: Creating the Package

Implementing a Policy (continued)
Step 2: Create a Package
In the OE schema, the ORDERS_APP_PKG is created. This package contains three routines:
• show_app_context: For learning and testing purposes, this procedure will display a

context attribute and value.
• set_app_context: This procedure sets a context attribute to a specific value.
• the_predicate: This function builds the predicate (the WHERE clause) that will control

the rows visible in the CUSTOMERS table to a user. (Note that this function requires two
input parameters. An error will occur when the policy is implemented if you exclude these
two parameters.)

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-15

Implementing a Policy (continued)
Step 2: Create a Package (continued)

CREATE OR REPLACE PACKAGE BODY orders_app_pkg
IS

c_context CONSTANT VARCHAR2(30) := 'ORDER_CTX';
c_attrib CONSTANT VARCHAR2(30) := 'ACCOUNT_MGR';

PROCEDURE show_app_context
IS
BEGIN

DBMS_OUTPUT.PUT_LINE('Type: ' || c_attrib ||
' - ' || SYS_CONTEXT(c_context, c_attrib));

END show_app_context;

PROCEDURE set_app_context
IS

v_user VARCHAR2(30);
BEGIN

SELECT user INTO v_user FROM dual;
DBMS_SESSION.SET_CONTEXT

(c_context, c_attrib, v_user);
END set_app_context;

FUNCTION the_predicate
(p_schema VARCHAR2, p_name VARCHAR2)
RETURN VARCHAR2
IS

v_context_value VARCHAR2(100) :=
SYS_CONTEXT(c_context, c_attrib);

v_restriction VARCHAR2(2000);
BEGIN

IF v_context_value LIKE 'AM%' THEN
v_restriction :=
'ACCOUNT_MGR_ID =
SUBSTR(''' || v_context_value || ''', 3, 3)';

ELSE
v_restriction := null;

END IF;
RETURN v_restriction;

END the_predicate;

END orders_app_pkg; -- package body
/

Note that the THE_PREDICATE function builds the WHERE clause and stores it in the
V_RESTRICTION variable. If the SYS_CONTEXT function returns an attribute value that starts
with AM, then the WHERE clause is built with ACCOUNT_MGR_ID = the last three characters of
the attribute value. If the user is AM145, then the WHERE clause will be:

WHERE account_mgr_id = 145

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-16

Copyright © 2004, Oracle. All rights reserved.

Step 3: Defining the Policy

Use the DBMS_RLS package:
• It contains the fine-grained access administrative

interface.
• It adds a fine-grained access control policy to a

table or view.
• You use the ADD_POLICY procedure to add a fine-

grained access control policy to a table or view.

Security
policies

ADD_POLICY oe_access_policy

Implementing a Policy (continued)
The DBMS_RLS package contains the fine-grained access control administrative interface. The
package holds several procedures. To add a policy, you use the ADD_POLICY procedure within
the DBMS_RLS package.
Note: DBMS_RLS is available with the Enterprise Edition only.
Step 3: Define the Policy
The DBMS_RLS.ADD_POLICY procedure adds a fine-grained access control policy to a table
or view. The procedure causes the current transaction, if any, to commit before the operation is
carried out. However, this does not cause a commit first if it is inside a DDL event trigger. These
are the parameters for the ADD_POLICY procedure:

DBMS_RLS.ADD_POLICY (
object_schema IN VARCHAR2 := NULL,
object_name IN VARCHAR2,
policy_name IN VARCHAR2,
function_schema IN VARCHAR2 := NULL,
policy_function IN VARCHAR2,
statement_types IN VARCHAR2 := NULL,
update_check IN BOOLEAN := FALSE,
enable IN BOOLEAN := TRUE);

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-17

Implementing a Policy (continued)
Step 3: Define the Policy (continued)

Below is a list of the procedures contained in the DBMS_RLS package. For detailed information,
refer to the PL/SQL Packages and Types Reference 10g Release 1 (10.1) reference manual.

Parameter Description
OBJECT_SCHEMA Schema containing the table or view (logon user, if NULL)
OBJECT_NAME Name of table or view to which the policy is added

POLICY_NAME Name of policy to be added. It must be unique for the same table or
view.

FUNCTION_SCHEMA Schema of the policy function (logon user, if NULL)
POLICY_FUNCTION Name of a function that generates a predicate for the policy. If the

function is defined within a package, then the name of the package
must be present.

STATEMENT_TYPES Statement types that the policy will apply. It can be any combination
of SELECT, INSERT, UPDATE, and DELETE. The default is to
apply to all these types.

UPDATE_CHECK Optional argument for the INSERT or UPDATE statement types.
The default is FALSE. Setting update_check to TRUE causes the
server to also check the policy against the value after insert or
update.

ENABLE Indicates if the policy is enabled when it is added. The default is
TRUE.

Procedure Description
ADD_POLICY Adds a fine-grained access control policy to a table or view
DROP_POLICY Drops a fine-grained access control policy from a table or view
REFRESH_POLICY Causes all the cached statements associated with the policy to be

reparsed
ENABLE_POLICY Enables or disables a fine-grained access control policy
CREATE_POLICY_GROUP Creates a policy group
ADD_GROUPED_POLICY Adds a policy associated with a policy group
ADD_POLICY_CONTEXT Adds the context for the active application
DELETE_POLICY_GROUP Deletes a policy group
DROP_GROUPED_POLICY Drops a policy associated with a policy group
DROP_POLICY_CONTEXT Drops a driving context from the object so that it will have one

less driving context
ENABLE_GROUPED_POLICY Enables or disables a row-level group security policy
REFRESH_GROUPED_POLICY Reparses the SQL statements associated with a refreshed policy

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-18

Copyright © 2004, Oracle. All rights reserved.

CONNECT /as sysdba

DECLARE
BEGIN
DBMS_RLS.ADD_POLICY (
'OE',
'CUSTOMERS',
'OE_ACCESS_POLICY',
'OE',
'ORDERS_APP_PKG.THE_PREDICATE',
'SELECT, UPDATE, DELETE',
FALSE,
TRUE);

END;
/

Step 3: Defining the Policy

Object schema
Table name
Policy name
Function schema
Policy function
Statement types
Update check
Enabled

Implementing a Policy (continued)
Step 3: Define the Policy (continued)
The security policy OE_ACCESS_POLICY is created and added with the
DBMS_RLS.ADD_POLICY procedure. The predicate function that defines how the policy is to
be implemented is associated with the policy being added.
This example specifies that whenever a SELECT, UPDATE, or DELETE statement on the
OE.CUSTOMERS table is executed, the predicate function return result is appended to the end of
the WHERE clause.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-19

Copyright © 2004, Oracle. All rights reserved.

CONNECT /as sysdba

CREATE OR REPLACE TRIGGER set_id_on_logon

AFTER logon on DATABASE

BEGIN

oe.orders_app_pkg.set_app_context;

END;

/

Step 4: Setting Up a Logon Trigger

Create a database trigger that executes whenever
anyone logs on to the database:

Implementing a Policy (continued)
Step 4: Set Up a Logon Trigger
After the context is created, the security package is defined, the predicate is defined, and the
policy is defined, you need to create a logon trigger to implement fine-grained access control.
This trigger causes the context to be set as each user is logged on.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-20

Copyright © 2004, Oracle. All rights reserved.

CONNECT oe/oe
SELECT COUNT(*), account_mgr_id
FROM customers
GROUP BY account_mgr_id;

COUNT(*) ACCOUNT_MGR_ID
---------- --------------

111 145
76 147
58 148
74 149
1

Viewing Example Results

Data in the CUSTOMERS table:

CONNECT AM148/oracle
SELECT customer_id, cust_last_name
FROM oe.customers;

CUSTOMER_ID CUST_LAST_NAME
----------- -----------------
...
58 rows selected.

Example Results
The AM148 user who logs on will see only the rows in the CUSTOMERS table that are defined by
the predicate function. The user can issue SELECT, UPDATE and DELETE statements against
the CUSTOMERS table, but only the rows defined by the predicate function can be manipulated.

UPDATE oe.customers
SET credit_limit = credit_limit + 5000
WHERE customer_id = 101;

0 rows updated.

The AM148 user does not have access to customer ID 101. Customer ID 101 has the account
manager of 145. To user AM148, any updates, deletes, or selects attempted on customers that do
not have him as an account manager are not performed. It is as though those customers do not
exist.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-21

Copyright © 2004, Oracle. All rights reserved.

Using Data Dictionary Views

• USER_POLICIES

• ALL_POLICIES

• DBA_POLICIES

• ALL_CONTEXT

• DBA_CONTEXT

Data Dictionary Views
You can query the data dictionary views to find out information about the policies available in
your schema.

View Description
USER_POLICIES All policies owned by the current schema
ALL_POLICIES All policies owned or accessible by the current schema

DBA_POLICIES All policies

ALL_CONTEXT All active context namespaces defined in the session
DBA_CONTEXT All context namespace information (active and inactive)

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-22

Copyright © 2004, Oracle. All rights reserved.

CONNECT AM148/oracle

SELECT *
FROM all_context;

NAMESPACE SCHEMA PACKAGE
--------------- --------- ----------
ORDER_CTX OE ORDERS_APP_PKG

Using the ALL_CONTEXT Dictionary View

Use ALL_CONTEXT to see the active context
namespaces defined in your session:

Dictionary Views
You can use the ALL_CONTEXT dictionary view to view information about contexts to which
you have access. In the slide, the NAMESPACE column is equivalent to the context name.
You can use the ALL_POLICIES dictionary view to view information about polices to which
you have access. In the example below, information is shown on the OE_ACCESS_POLICY
policy.

SELECT object_name, policy_name, pf_owner, package,
function, sel, ins, upd, del

FROM all_policies;

OBJECT_NAME POLICY_NAME
---------------------------- ----------------------------
PF_OWNER PACKAGE
---------------------------- ----------------------------
FUNCTION SEL INS UPD DEL
---------------------------- --- --- --- ---
CUSTOMERS OE_ACCESS_POLICY
OE ORDERS_APP_PKG
THE_PREDICATE YES NO YES YES

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-23

Copyright © 2004, Oracle. All rights reserved.

Policy Groups

• Indicate a set of policies that belong to
an application

• Are set up by a DBA through an application
context, called a driving context

• Use the DBMS_RLS package to administer the
security policies

ADD_POLICY_GROUP

Policy Groups
Policy groups were introduced in Oracle9i, release 1 (9.0.1). The database administrator
designates an application context, called a driving context, to indicate the policy group in effect.
When tables or views are accessed, the fine-grained access control engine looks up the driving
context to determine the policy group in effect and enforces all the associated policies that
belong to that policy group.
The PL/SQL DBMS_RLS package enables you to administer your security policies and groups.
Using this package, you can add, drop, enable, disable, and refresh the policy groups you create.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-24

Copyright © 2004, Oracle. All rights reserved.

More About Policies

• SYS_DEFAULT is the default policy group:
– SYS_DEFAULT group may or may not

contain policies.
– All policies belong to SYS_DEFAULT by default.
– You cannot drop the SYS_DEFAULT policy group.

• Use DBMS_RLS.CREATE_POLICY_GROUP to create
a new group.

• Use DBMS_RLS.ADD_GROUPED_POLICY to add a
policy associated with a policy group.

• You can apply multiple driving contexts to the
same table or view.

More About Policies
A policy group is a set of security policies that belong to an application. You can designate an
application context (known as a driving context) to indicate the policy group in effect. When the
tables or views are accessed, the server looks up the driving context (that is also known as policy
context) to determine the policy group in effect. It enforces all the associated policies that belong
to that policy group.
By default, all policies belong to the SYS_DEFAULT policy group. Policies defined in this group
for a particular table or view will always be executed along with the policy group specified by
the driving context. The SYS_DEFAULT policy group may or may not contain policies. If you
attempt to drop the SYS_DEFAULT policy group, an error will be raised. If you add policies
associated with two or more objects to the SYS_DEFAULT policy group, then each such object
will have a separate SYS_DEFAULT policy group associated with it. For example, the
CUSTOMERS table in the OE schema has one SYS_DEFAULT policy group, and the ORDERS
table in the OE schema has a different SYS_DEFAULT policy group associated with it. If you
add policies associated with two or more objects, then each such object will have a separate
SYS_DEFAULT policy group associated with it.

SYS_DEFAULT
- policy1 (OE/CUSTOMERS)
- policy3 (OE/CUSTOMERS)
SYS_DEFAULT
- policy2 (OE/ORDERS)

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-25

More About Policies (continued)
When adding the policy to a table or view, you can use the
DBMS_RLS.ADD_GROUPED_POLICY interface to specify the group to which the policy
belongs. To specify which policies will be effective, you add a driving context using the
DBMS_RLS.ADD_POLICY_CONTEXT interface. If the driving context returns an unknown
policy group, an error is returned.
If the driving context is not defined, then all policies are executed. Likewise, if the driving
context is NULL, then policies from all policy groups are enforced. In this way, an application
that accesses the data cannot bypass the security setup module (that sets up application context)
to avoid any applicable policies.
You can apply multiple driving contexts to the same table or view, and each of them will be
processed individually. In this way, you can configure multiple active sets of policies to be
enforced.
You can create a new policy using the DBMS_RLS package either from the command line or
programmatically, or access the Oracle Policy Manager graphical user interface in Oracle
Enterprise Manager.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-26

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Describe the process of fine-grained

access control
• Implement and test fine-grained access control

Security
policies

ValueAttribute

Context

Attached
to a

session

Associated
with a

packageSession

Implements

Summary
In this lesson you should have learned about fine-grained access control and the steps required to
implement a virtual private database.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-27

Copyright © 2004, Oracle. All rights reserved.

Practice Overview

This practice covers the following topics:
• Creating an application context
• Creating a policy
• Creating a logon trigger
• Implementing a virtual private database
• Testing the virtual private database

Practice Overview
In this practice you will implement and test fine-grained access control.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-28

Practice 6
In this practice you will define an application context and security policy to implement the
policy: “Sales Representatives can see their own order information only in the ORDERS table.”
You will create sales representative IDs to test the success of your implementation.
Examine the definition of the ORDERS table, and the sales representative’s data:

DESCRIBE orders
Name Null? Type
------------------ -------- --------------------------------
ORDER_ID NOT NULL NUMBER(12)
ORDER_DATE NOT NULL TIMESTAMP(6) WITH LOCAL TIME ZONE
ORDER_MODE VARCHAR2(8)
CUSTOMER_ID NOT NULL NUMBER(6)
ORDER_STATUS NUMBER(2)
ORDER_TOTAL NUMBER(8,2)
SALES_REP_ID NUMBER(6)
PROMOTION_ID NUMBER(6)

SELECT sales_rep_id, count(*)
FROM orders
GROUP BY sales_rep_id;

SALES_REP_ID COUNT(*)
------------ ----------

153 5
154 10
155 5
156 5
158 7
159 7
160 6
161 13
163 12

35
10 rows selected.

1. Examine, and then run the lab_06_01.sql script.
This script will create the sales representative’s ID accounts with appropriate privileges to
access the database.

2. Set up an application context:
Connect to the database as SYSDBA before creating this context.
Create an application context named sales_orders_ctx.
Associate this context to the oe.sales_orders_pkg.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-29

Practice 6 (continued)
3. Connect as OE/OE.

Examine this package specification:
CREATE OR REPLACE PACKAGE sales_orders_pkg
IS
PROCEDURE set_app_context;
FUNCTION the_predicate
(p_schema VARCHAR2, p_name VARCHAR2)
RETURN VARCHAR2;

END sales_orders_pkg; -- package spec
/

Create this package specification and then the package body in the OE schema.
When you create the package body, set up two constants as follows:

c_context CONSTANT VARCHAR2(30) := 'SALES_ORDER_CTX';
c_attrib CONSTANT VARCHAR2(30) := 'SALES_REP';

Use these constants in the SET_APP_CONTEXT procedure to set the application context to the
current user.

4. Connect as SYSDBA and define the policy.
Use DBMS_RLS.ADD_POLICY to define the policy.
Use these specifications for the parameter values:

object_schema OE
object_name ORDERS
policy_name OE_ORDERS_ACCESS_POLICY
function_schema OE
policy_function SALES_ORDERS_PKG.THE_PREDICATE
statement_types SELECT, INSERT, UPDATE, DELETE
update_check FALSE,
enable TRUE);

5. Connect as SYSDBA and create a logon trigger to implement fine-grained access control.
You can call the trigger SET_ID_ON_LOGON. This trigger causes the context to be set as
each user is logged on.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 6-30

Practice 6 (continued)
6. Test the fine-grained access implementation. Connect as your SR user and query the

ORDERS table. For example, your results should match:

CONNECT sr153/oracle

SELECT sales_rep_id, COUNT(*)
FROM orders
GROUP BY sales_rep_id;

SALES_REP_ID COUNT(*)
------------ ----------

153 5

CONNECT sr154/oracle

SELECT sales_rep_id, COUNT(*)
FROM orders
GROUP BY sales_rep_id;

SALES_REP_ID COUNT(*)
------------ ----------

154 10

Note
During debugging, you may need to disable or remove some of the objects created for this
lesson.
If you need to disable the logon trigger, issue the command:

ALTER TRIGGER set_id_on_logon DISABLE;

If you need to remove the policy you created, issue the command:
EXECUTE DBMS_RLS.DROP_POLICY('OE', 'ORDERS', -

'OE_ORDERS_ACCESS_POLICY')

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

Performance and Tuning

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-2

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Tune PL/SQL code
• Identify and tune memory issues
• Recognize network issues
• Perform native and interpreted compilation

Objectives
In this lesson, the performance and tuning topics are divided into four main groups

• Tuning PL/SQL code
• Memory issues
• Network issues
• Native and interpreted compilation.

In the “Tuning PL/SQL Code” section, you learn why it is important to write smaller executable
sections of code; when to use SQL or PL/SQL; how bulk binds can improve performance; how
to use the FORALL syntax; how to rephrase conditional statements; about data types and
constraint issues.
In the memory issues section, you learn about the shared pool and what you can do
programmatically to tune it.
In the network issues section, you learn why it is important to group your OPEN-FOR statements
when passing host cursor variables to PL/SQL; when it is appropriate to use client-side PL/SQL;
how to avoid unnecessary reparsing; how to utilize array processing.
In the compilation section, you learn about native and interpreted compilation.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-3

Copyright © 2004, Oracle. All rights reserved.

Tuning PL/SQL Code

You can tune your PL/SQL code by:
• Writing smaller executable sections of code
• Comparing SQL with PL/SQL and where one is

appropriate over the other
• Understanding how bulk binds can improve

performance
• Using the FORALL support with bulk binding
• Handling and saving exceptions with the SAVE

EXCEPTIONS syntax
• Rephrasing conditional statements
• Identifying data type and constraint issues

Tuning PL/SQL Code
By tuning your PL/SQL code, you can tailor its performance to best meet your needs. In the
following pages you learn about some of the main PL/SQL tuning issues that can improve the
performance of your PL/SQL applications. ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-4

Copyright © 2004, Oracle. All rights reserved.

Modularizing Your Code

• Limit the number of lines of code between a BEGIN
and END to about a page or 60 lines of code.

• Use packaged programs to keep each executable
section small.

• Use local procedures and functions to hide logic.
• Use a function interface to hide formulas and

business rules.

Write Smaller Executable Sections
By writing smaller sections of executable code, you can make the code easier to read,
understand, and maintain. When developing an application, use a stepwise refinement. Make a
general description of what you want your program to do, and then implement the details in
subroutines. Using local modules and packaged programs can help in keeping each executable
section small. This will make it easier for you to debug and refine your code.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-5

Copyright © 2004, Oracle. All rights reserved.

Comparing SQL with PL/SQL

Each has its own benefits:
• SQL:

– Accesses data in the database
– Treats data as sets

• PL/SQL:
– Provides procedural capabilities
– Has more flexibility built into the language

SQL Versus PL/SQL
Both SQL and PL/SQL have their strengths. However, there are situations where one language is
more appropriate to use than the other.
You use SQL to access data in the database with its powerful statements. SQL processes sets of
data as groups rather than as individual units. The flow-control statements of most programming
languages are absent in SQL, but present in PL/SQL. When using SQL in your PL/SQL
applications, be sure not to repeat a SQL statement. Instead, encapsulate your SQL statements in
a package and make calls to the package.
Using PL/SQL, you can take advantage of the PL/SQL-specific enhancements for SQL, such as
autonomous transactions, fetching into cursor records, using a cursor FOR loop, using the
RETURNING clause for information about modified rows, and using BULK COLLECT to
improve the performance of multirow queries.
While there are advantages of using PL/SQL over SQL in several cases, use PL/SQL with
caution, especially under the following circumstances:

• Performing high-volume inserts
• Using user-defined PL/SQL functions
• Using external procedure calls
• Using the utl_file package as an alternative to SQL*Plus in high-volume reporting

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-6

Copyright © 2004, Oracle. All rights reserved.

...FOR I IN 1..5600 LOOP
counter := counter + 1;
SELECT product_id, warehouse_id

INTO v_p_id, v_wh_id
FROM big_inventories WHERE v_p_id = counter;

INSERT INTO inventories2 VALUES(v_p_id, v_wh_id);
END LOOP;...

Comparing SQL with PL/SQL

• Some simple set processing is markedly faster
than the equivalent PL/SQL.

• Avoid using procedural code when it may be
better to use SQL.

BEGIN
INSERT INTO inventories2
SELECT product_id, warehouse_id
FROM main_inventories;

END;

SQL Versus PL/SQL (continued)
The SQL statement explained in the slide is a great deal faster than the equivalent PL/SQL loop.
Take advantage of the simple set processing operations implicitly available in the SQL language,
as it can run markedly faster than the equivalent PL/SQL loop. Avoid writing procedural code
when SQL would work better.
However, there are occasions when you will get better performance from PL/SQL even when the
process could be written in SQL. Correlated updates are slow. With correlated updates, a better
method is to access only correct rows using PL/SQL. The following PL/SQL loop is faster than
the equivalent correlated update SQL statement.

DECLARE
CURSOR cv_raise IS

SELECT deptno, increase
FROM emp_raise;

BEGIN
FOR dept IN cv_raise LOOP

UPDATE big_emp
SET sal = sal * dept.increase
WHERE deptno = dept.deptno;

END LOOP;
...

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-7

Copyright © 2004, Oracle. All rights reserved.

Comparing SQL with PL/SQL

• Instead of:

• Create a stand-alone procedure:

• Or, a packaged procedure:

insert_order_item (
2458, 6, 3515, 2.00, 4);

...

INSERT INTO order_items

(order_id, line_item_id, product_id,

unit_price, quantity)

VALUES (...

orderitems.ins (
2458, 6, 3515, 2.00, 4);

Encapsulate SQL Statements
From a design standpoint, do not embed your SQL statements directly within application code. It
is better if you write procedures to perform your SQL statements.
Pros

• If you design your application so that all programs that perform an insert on a specific table
use the same INSERT statement, your application will run faster because of less parsing
and reduced demands on the SGA memory.

• Your program will also handle DML errors consistently.
Cons

• You may need to write more procedural code.
• You may need to write several variations of update or insert procedures to handle the

combinations of columns that you are updating or inserting into.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-8

Copyright © 2004, Oracle. All rights reserved.

Using Bulk Binding

SQL enginePL/SQL run-time engine

PL/SQL block

FORALL j IN 1..1000
INSERT …
(OrderId(j),

OrderDate(j), …);

Use bulk binds to reduce context switches between
the PL/SQL engine and the SQL engine.

SQL
statement
executor

Procedural
statement
executor

Bulk Binding
With bulk binds, you can improve performance by decreasing the number of context switches
between the SQL and PL/SQL engine. When a PL/SQL program executes, each time a SQL
statement is encountered, there is a switch between the PL/SQL engine to the SQL engine. The
more the number of switches, the lesser the efficiency.
Improved Performance
Bulk binding enables you to implement array fetching. With bulk binding, entire collections, and
not just individual elements, are passed back and forth. Bulk binding can be used with nested
tables, varrays, and associative arrays.
The more rows affected by a SQL statement, the greater is the performance gain with bulk
binding.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-9

Copyright © 2004, Oracle. All rights reserved.

Using Bulk Binding

Bind whole arrays of values all at once, rather than
looping to perform fetch, insert, update, and delete on
multiple rows.
• Instead of:

• Use:

...
FOR i IN 1 .. 50000 LOOP

INSERT INTO bulk_bind_example_tbl
VALUES(...);

END LOOP; ...

...
FORALL i IN 1 .. 50000

INSERT INTO bulk_bind_example_tbl
VALUES(...);

END; ...

Using Bulk Binding
In the first example shown, one row is inserted into the target table at a time. In the second
example, the FOR loop is changed to a FORALL (which has an implicit loop) and all
immediately subsequent DML statements are processed in bulk. The following are the entire
code examples along with timing statistics for running each FOR loop example.
First, create the demonstration table:

CREATE TABLE bulk_bind_example_tbl (
num_col NUMBER,
date_col DATE,
char_col VARCHAR2(40));

Second, set the SQL*Plus TIMING variable on. Setting this on enables you to see the
approximate elapsed time of the last SQL statement:

SET TIMING ON

Third, run this block of code that includes a FOR loop to insert 50,000 rows:
DECLARE

TYPE typ_numlist IS TABLE OF NUMBER;
TYPE typ_datelist IS TABLE OF DATE;
TYPE typ_charlist IS TABLE OF VARCHAR2(40)

INDEX BY PLS_INTEGER;
-- continued onto next page...

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-10

Using Bulk Binding (continued)

n typ_numlist := typ_numlist();
d typ_datelist := typ_datelist();
c typ_charlist;

BEGIN
FOR i IN 1 .. 50000 LOOP

n.extend;
n(i) := i;
d.extend;
d(i) := sysdate + 1;
c(i) := lpad(1, 40);

END LOOP;
FOR I in 1 .. 50000 LOOP

INSERT INTO bulk_bind_example_tbl
VALUES (n(i), d(i), c(i));

END LOOP;
END;
/
PL/SQL procedure successfully completed.
Elapsed: 00:00:17.62

Last, run this block of code that includes a FORALL loop to insert 50,000 rows. Note the
significant decrease in the timing when using the FORALL processing:

DECLARE
TYPE typ_numlist IS TABLE OF NUMBER;
TYPE typ_datelist IS TABLE OF DATE;
TYPE typ_charlist IS TABLE OF VARCHAR2(40)

INDEX BY PLS_INTEGER;

n typ_numlist := typ_numlist();
d typ_datelist := typ_datelist();
c typ_charlist;

BEGIN
FOR i IN 1 .. 50000 LOOP

n.extend;
n(i) := i;
d.extend;
d(i) := sysdate + 1;
c(i) := lpad(1, 40);

END LOOP;
FORALL I in 1 .. 50000

INSERT INTO bulk_bind_example_tbl
VALUES (n(i), d(i), c(i));

END;
/

PL/SQL procedure successfully completed.
Elapsed: 00:00:02.08

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-11

Copyright © 2004, Oracle. All rights reserved.

Using Bulk Binding

Use BULK COLLECT to improve performance:
CREATE OR REPLACE PROCEDURE process_customers
(p_account_mgr customers.account_mgr_id%TYPE)

IS
TYPE typ_numtab IS TABLE OF
customers.customer_id%TYPE;

TYPE typ_chartab IS TABLE OF
customers.cust_last_name%TYPE;

TYPE typ_emailtab IS TABLE OF
customers.cust_email%TYPE;

v_custnos typ_numtab;
v_last_names typ_chartab;
v_emails typ_emailtab;

BEGIN
SELECT customer_id, cust_last_name, cust_email
BULK COLLECT INTO v_custnos, v_last_names, v_emails
FROM customers
WHERE account_mgr_id = p_account_mgr;

...
END process_customers;

Using BULK COLLECT
When you require a large number of rows to be returned from the database, you can use the
BULK COLLECT option for queries. This option enables you to retrieve multiple rows of data in
a single request. The retrieved data is then populated into a series of collection variables. This
query will run significantly faster than if it were done without the BULK COLLECT.
You can use the BULK COLLECT option with explicit cursors too:

BEGIN
OPEN cv_customers INTO customers_rec;
FETCH cv_customers BULK COLLECT INTO

v_custnos, v_last_name, v_mails;
...

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-12

Copyright © 2004, Oracle. All rights reserved.

DECLARE
TYPE typ_replist IS VARRAY(100) OF NUMBER;
TYPE typ_numlist IS TABLE OF

orders.order_total%TYPE;
repids typ_replist :=

typ_replist(153, 155, 156, 161);
totlist typ_numlist;
c_big_total CONSTANT NUMBER := 60000;

BEGIN
FORALL i IN repids.FIRST..repids.LAST
UPDATE orders
SET order_total = .95 * order_total
WHERE sales_rep_id = repids(i)
AND order_total > c_big_total
RETURNING order_total BULK COLLECT INTO Totlist;

END;

Using Bulk Binding

Use the RETURNING clause to retrieve information
about rows being modified:

The RETURNING Clause
Often, applications need information about the row affected by a SQL operation, for example, to
generate a report or take a subsequent action. Using the RETURNING clause, you can retrieve
information about rows you have just modified with the INSERT, UPDATE, and DELETE
statements. This can improve performance because it enables you to make changes, and at the
same time, collect information of the data being changed. As a result, fewer network round trips,
less server CPU time, fewer cursors, and less server memory are required. Without the
RETURNING clause, you need two operations: one to make the change, and a second operation
to retrieve information about the change.
In the example shown, the order_total information is retrieved from the ORDERS table and
collected into the totlist collection. The totlist collection is returned in bulk to the
PL/SQL engine.
If you did not use the RETURNING clause, you would need to perform two operations, one for
the UPDATE, and another for the SELECT:

UPDATE orders SET order_total = .95 * order_total
WHERE sales_rep_id = p_id
AND order_total > c_big_total;

SELECT order_total FROM orders
WHERE sales_rep_id = p_id AND order_total > c_big_total;

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-13

The RETURNING Clause (continued)
In the following example, you update the credit limit of a customer and at the same time retrieve
the customer’s new credit limit into a SQL*Plus environment variable:

CREATE OR REPLACE PROCEDURE change_credit
(p_in_id IN customers.customer_id%TYPE,
o_credit OUT NUMBER)
IS
BEGIN
UPDATE customers
SET credit_limit = credit_limit * 1.10
WHERE customer_id = p_in_id
RETURNING credit_limit INTO o_credit;

END change_credit;
/
VARIABLE g_credit NUMBER
EXECUTE change_credit(109, :g_credit)
PRINT g_credit

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-14

Copyright © 2004, Oracle. All rights reserved.

• You can use the SAVE EXCEPTIONS keywords in
your FORALL statements:

• Exceptions raised during execution are saved in
the %BULK_EXCEPTIONS cursor attribute.

• The attribute is a collection of records with two
fields:

– Note that the values always refer to the most
recently executed FORALL statement.

FORALL index IN lower_bound..upper_bound
SAVE EXCEPTIONS
{insert_stmt | update_stmt | delete_stmt}

Using SAVE EXCEPTIONS

Holds the corresponding Oracle error codeERROR_CODE

Holds the iteration of the FORALL statement
where the exception was raised

ERROR_INDEX

DefinitionField

Handling FORALL Exceptions
To handle exceptions encountered during a BULK BIND operation, you can add the keyword
SAVE EXCEPTIONS to your FORALL statement. Without it, if any one row fails during the
FORALL loop, the loop execution is terminated. SAVE_EXCEPTIONS allows the loop to
continue processing and is required if you want the loop to continue.
All exceptions raised during the execution are saved in the cursor attribute
%BULK_EXCEPTIONS, which stores a collection of records. This cursor attribute is available
only from the exception handler.
Each record has two fields. The first field, %BULK_EXCEPTIONS(i).ERROR_INDEX, holds
the “iteration” of the FORALL statement during which the exception was raised. The second
field, BULK_EXCEPTIONS(i).ERROR_CODE, holds the corresponding Oracle error code.
The values stored by %BULK_EXCEPTIONS always refer to the most recently executed
FORALL statement. The number of exceptions is saved in the count attribute of
%BULK_EXCEPTIONS, that is, %BULK_EXCEPTIONS.COUNT. Its subscripts range from 1 to
COUNT. If you omit the keywords SAVE EXCEPTIONS, execution of the FORALL statement
stops when an exception is raised. In that case, SQL%BULK_EXCEPTIONS.COUNT returns 1,
and SQL%BULK_EXCEPTIONS contains just one record. If no exception is raised during the
execution, SQL%BULK_EXCEPTIONS.COUNT returns 0.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-15

Copyright © 2004, Oracle. All rights reserved.

DECLARE
TYPE NumList IS TABLE OF NUMBER;
num_tab NumList :=

NumList(100,0,110,300,0,199,200,0,400);
bulk_errors EXCEPTION;
PRAGMA EXCEPTION_INIT (bulk_errors, -24381);

BEGIN
FORALL i IN num_tab.FIRST..num_tab.LAST
SAVE EXCEPTIONS
DELETE FROM orders WHERE order_total < 500000/num_tab(i);

EXCEPTION WHEN bulk_errors THEN
DBMS_OUTPUT.PUT_LINE('Number of errors is: '

|| SQL%BULK_EXCEPTIONS.COUNT);
FOR j in 1..SQL%BULK_EXCEPTIONS.COUNT
LOOP
DBMS_OUTPUT.PUT_LINE (
TO_CHAR(SQL%BULK_EXCEPTIONS(j).error_index) ||
' / ' ||
SQLERRM(-SQL%BULK_EXCEPTIONS(j).error_code));

END LOOP;
END;
/

Handling FORALL Exceptions

Example
In this example, the EXCEPTION_INIT pragma defines an exception named BULK_ERRORS
and associates the name to the ORA-24381 code, which is an "Error in Array DML".
The PL/SQL block raises the predefined exception ZERO_DIVIDE when i equals 2, 5, 8. After
the bulk-bind is completed, SQL%BULK_EXCEPTIONS.COUNT returns 3 because of trying to
divide by zero three times. To get the Oracle error message (which includes the code), we pass
SQL%BULK_EXCEPTIONS(i).ERROR_CODE to the error-reporting function SQLERRM.
Here is the output:

Number of errors is: 5
Number of errors is: 3
2 / ORA-01476: divisor is equal to zero
5 / ORA-01476: divisor is equal to zero
8 / ORA-01476: divisor is equal to zero

PL/SQL procedure successfully completed.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-16

Copyright © 2004, Oracle. All rights reserved.

IF credit_ok(cust_id) AND (v_order_total < 5000) THEN

...

END IF;

Rephrasing Conditional
Control Statements

In logical expressions, PL/SQL stops evaluating the
expression as soon as the result is determined.
• Scenario 1:

• Scenario 2:

IF | OR (v_sales_rep_id IS NULL) THEN
...
...

END IF;

TRUE FALSE

Rephrase Conditional Control Statements
In logical expressions, improve performance by tuning conditional constructs carefully.
When evaluating a logical expression, PL/SQL stops evaluating the expression as soon as the
result can be determined. For example, in the first scenario in the slide, which involves an OR
expression, when the value of the left operand yields TRUE, PL/SQL need not evaluate the right
operand (because OR returns TRUE if either of its operands is true).
Now, consider the second scenario in the slide, which involves an AND expression. The Boolean
function CREDIT_OK is always called. However, if you switch the operands of AND as follows,
the function is called only when the expression v_order_total < 5000 is true (because
AND returns TRUE only if both its operands are true):

IF (v_order_total < 5000) AND credit_ok(cust_id) THEN
...

END IF;

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-17

Copyright © 2004, Oracle. All rights reserved.

Rephrasing Conditional
Control Statements

If your business logic results in one condition being
true, use the ELSIF syntax for mutually exclusive
clauses:

IF v_acct_mgr = 145 THEN

process_acct_145;

END IF;

IF v_acct_mgr = 147 THEN

process_acct_147;

END IF;

IF v_acct_mgr = 148 THEN

process_acct_148;

END IF;

IF v_acct_mgr = 149 THEN

process_acct_149;

END IF;

IF v_acct_mgr = 145

THEN

process_acct_145;

ELSIF v_acct_mgr = 147
THEN

process_acct_147;

ELSIF v_acct_mgr = 148
THEN

process_acct_148;

ELSIF v_acct_mgr = 149
THEN

process_acct_149;

END IF;

Mutually Exclusive Conditions
If you have a situation where you are checking a list of choices for a mutually exclusive result,
use the ELSIF syntax, as it offers the most efficient implementation. With ELSIF, after a
branch evaluates to TRUE, the other branches are not executed.
In the example shown on the right, every IF statement is executed. In the example on the left,
after a branch is found to be true, the rest of the branch conditions are not evaluated.
Sometimes you do not need an IF statement. For example, the following code can be rewritten
without an IF statement:

IF date_ordered < sysdate + 7 THEN
late_order := TRUE;

ELSE
late_order := FALSE;

END IF;

--rewritten without an IF statement:
late_order := date_ordered < sysdate + 7;

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-18

Copyright © 2004, Oracle. All rights reserved.

DECLARE
n NUMBER;

BEGIN
n := n + 15; -- converted
n := n + 15.0; -- not converted
...

END;

Avoiding Implicit Data Type Conversion

• PL/SQL performs implicit conversions between
structurally different data types.

• Example: When assigning a PLS_INTEGER variable
to a NUMBER variable

strings

dates

numbers

Avoid Implicit Data Type Conversion
PL/SQL automatically performs implicit conversions between structurally different types at run
time for you. By avoiding implicit conversions, you can improve the performance of your code.
The major problems with implicit data type conversion are:

• It is non-intuitive and can result in unexpected results.
• You have no control over the implicit conversion.

In the example shown, assigning a PLS_INTEGER variable to a NUMBER variable or vice versa
results in a conversion, because their representations are different. Such implicit conversions can
happen during parameter passing as well. The integer literal 15 is represented internally as a
signed 4-byte quantity, so PL/SQL must convert it to an Oracle number before the addition.
However, the floating-point literal 15.0 is represented as a 22-byte Oracle number, so no
conversion is necessary.
To avoid implicit data type conversion, you can use the built-in functions:
• TO_DATE
• TO_NUMBER
• TO_CHAR
• CAST

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-19

Copyright © 2004, Oracle. All rights reserved.

Using PLS_INTEGER Data Type for Integers

Use PLS_INTEGER when dealing with integer data:
• It is an efficient data type for integer variables.
• It requires less storage than INTEGER or NUMBER.
• Its operations use machine arithmetic, which is

faster than library arithmetic.

Use PLS_INTEGER for All Integer Operations
When you need to declare an integer variable, use the PLS_INTEGER data type, which is the
most efficient numeric type. That is because PLS_INTEGER values require less storage than
INTEGER or NUMBER values, which are represented internally as 22-byte Oracle numbers. Also,
PLS_INTEGER operations use machine arithmetic, so they are faster than BINARY_INTEGER,
INTEGER, or NUMBER operations, which use library arithmetic.
Furthermore, INTEGER, NATURAL, NATURALN, POSITIVE, POSITIVEN, and SIGNTYPE
are constrained subtypes. Their variables require precision checking at run time that can affect
the performance.
The Oracle Database 10g data types BINARY_FLOAT and BINARY_DOUBLE are also faster
than the NUMBER data type.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-20

Copyright © 2004, Oracle. All rights reserved.

Understanding the NOT NULL Constraint

PROCEDURE calc_m IS

m NUMBER NOT NULL:=0;

a NUMBER;

b NUMBER;

BEGIN

...

m := a + b;

...

END;

PROCEDURE calc_m IS

m NUMBER; --no
--constraint

a NUMBER;

b NUMBER;

BEGIN

...

m := a + b;

IF m IS NULL THEN

-- raise error

END IF;

END;

The NOT NULL Constraint
In PL/SQL, using the NOT NULL constraint incurs a small performance cost. Therefore, use it
with care. Consider the example on the left in the slide that uses the NOT NULL constraint for m.
Because m is constrained by NOT NULL, the value of the expression a + b is assigned to a
temporary variable, which is then tested for nullity. If the variable is not null, its value is
assigned to m. Otherwise, an exception is raised. However, if m were not constrained, the value
would be assigned to m directly.
A more efficient way to write the same example is shown on the right in the slide.
Note that the subtypes NATURALN and POSTIVEN are defined as NOT NULL subtypes of
NATURAL and POSITIVE. Using them incurs the same performance cost as seen above.

Using the NOT NULL Constraint Not Using the Constraint
Slower Faster
No extra coding is needed. Requires extra coding that is error prone
When an error is implicitly raised, the
value of m is preserved.

When an error is explicitly raised, the
old value of m is lost.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-21

Copyright © 2004, Oracle. All rights reserved.

Passing Data Between PL/SQL Programs

• The flexibility built into PL/SQL enables you to
pass:
– Simple scalar variables
– Complex data structures

• You can use the NOCOPY hint to improve
performance with IN OUT parameters.

Passing Data Between PL/SQL Programs
You can pass simple scalar data or complex data structures between PL/SQL programs.
When passing collections as parameters, you may encounter a slight decrease in performance as
compared with passing scalar data, but the performance is still comparable. However, when
passing IN OUT parameters that are complex (such as collections) to a procedure, you will
experience significantly more overhead because a copy of the parameter value before the routine
is executed is stored. The stored value must be kept in case an exception occurs. You can use the
NOCOPY compiler hint to improve performance in this situation. NOCOPY instructs the compiler
to not make a backup copy of the parameter that is being passed. Be careful when using the
NOCOPY compiler hint because should your program encounter an exception, your results are
not predictable.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-22

Copyright © 2004, Oracle. All rights reserved.

Passing Data Between PL/SQL Programs

Passing records as parameters to encapsulate data,
as well as, write and maintain less code:
DECLARE
TYPE CustRec IS RECORD (
customer_id customers.customer_id%TYPE,
cust_last_name VARCHAR2(20),
cust_email VARCHAR2(30),
credit_limit NUMBER(9,2));

...
PROCEDURE raise_credit (cust_info CustRec);

Passing Records as Arguments
You can declare user-defined records as formal parameters of procedures and functions as shown
above. By using records to pass values, you are encapsulating the data being passed, and it
requires less coding than defining, assigning, and manipulating each record field individually.
When you call a function that returns a record, use the notation:

function_name(parameters).field_name

For example, the following call to the NTH_HIGHEST_ORD_TOTAL function references the
field ORDER_TOTAL in the ORD_INFO record:

DECLARE
TYPE OrdRec IS RECORD (
v_order_id NUMBER(6),
v_order_total REAL);
v_middle_total REAL;

FUNCTION nth_highest_total (n INTEGER) RETURN OrdRec IS
order_info OrdRec;

BEGIN ...
RETURN order_info; -- return record

END;
BEGIN -- call function

v_middle_total := nth_highest_total(10).v_order_total;
...

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-23

Copyright © 2004, Oracle. All rights reserved.

Passing Data Between PL/SQL Programs

Use collections as arguments:
PACKAGE cust_actions IS
TYPE NameTabTyp IS TABLE OF

customer.cust_last_name%TYPE
INDEX BY PLS_INTEGER;
TYPE CreditTabTyp IS TABLE OF

customers.credit_limit%TYPE
INDEX BY PLS_INTEGER;

...
PROCEDURE credit_batch(name_tab IN NameTabTyp ,

credit_tab IN CreditTabTyp,
...);

PROCEDURE log_names (name_tab IN NameTabTyp);
END cust_actions;

Passing Collections as Arguments
You can declare collections as formal parameters of procedures and functions. In the example in
the slide, associative arrays are declared as the formal parameters of two packaged procedures. If
you were to use scalar variables to pass the data, you would need to code and maintain many
more declarations.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-24

Copyright © 2004, Oracle. All rights reserved.

Identifying and Tuning Memory Issues

Tuning the shared pool:

Instance

SGA Shared pool

Tuning the Size of the Shared Pool of the SGA
When you invoke a program element, such as a procedure or a package, its compiled version is
loaded into the shared pool memory area, if it is not already present there. It remains there until
the memory is needed by other resources and the package has not been used recently. If it gets
flushed out from memory, the next time any object in the package is needed, the whole package
has to be loaded in memory again, which involves time and maintenance to make space for it.
If the package is already present in the shared memory area, your code executes faster. It is,
therefore, important to make sure that packages that are used very frequently are always present
in memory. The larger the shared pool area, the more likely it is that the package remains in
memory. However, if the shared pool area is too large, you waste memory. When tuning the
shared pool, make sure it is large enough to hold all the frequently needed objects in your
application.
Note: Tuning the shared pool is usually a DBA’s responsibility.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-25

Copyright © 2004, Oracle. All rights reserved.

Pinning Objects

Pinning:
• Is used so that objects avoid the Oracle least

recently used (LRU) mechanism and do not get
flushed out of memory

• Is applied with the help of the
sys.dbms_shared_pool package:
– sys.dbms_shared_pool.keep

– sys.dbms_shared_pool.unkeep

– sys.dbms_shared_pool.sizes

What Is Pinning a Package?
Sizing the shared pool properly is one of the ways of ensuring that frequently used objects are
available in memory whenever needed, so that performance improves. Another way to improve
performance is to pin frequently used packages in the shared pool.
When a package is pinned, it is not aged out with the normal least recently used (LRU)
mechanism that the Oracle server otherwise uses to flush out a least recently used package. The
package remains in memory no matter how full the shared pool gets or how frequently you
access the package.
You pin packages with the help of the sys.dbms_shared_pool package. This package
contains three procedures:

Procedure Description
keep Use this procedure to pin objects to the shared pool.
unkeep Use this procedure to age out an object that you have

requested to be kept in the shared pool.
sizes Use this procedure to dump the contents of the shared pool to

the DBMS_OUTPUT buffer. It can show the objects in the
shared pool that are larger than the specified size, in
kilobytes.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-26

Copyright © 2004, Oracle. All rights reserved.

...
BEGIN

SYS.DBMS_SHARED_POOL.KEEP ('OE.OVER_PACK', 'P');
...
SYS.DBMS_SHARED_POOL.UNKEEP ('OE. OVER_PACK', 'P');
...

END;
...

SYS.DBMS_SHARED_POOL.KEEP(object_name, flag)

Pinning Objects

Syntax:

Example:

SYS.DBMS_SHARED_POOL.UNKEEP(object_name, flag)

Using sys.dbms_shared_pool
You can pin and unpin packages, procedures, functions, types, triggers, and sequences. This may
be useful for certain semi-frequently used large objects (larger than 20 KB), because when large
objects are brought into the shared pool, a larger number of other objects (much more than the
size of the object being brought in) may need to be aged out in order to create a contiguous area
large enough. Pinning occurs when the sys.dbms_shared_pool.keep procedure is
invoked.
To create DBMS_SHARED_POOL, run the DBMSPOOL.SQL script. The PRVTPOOL.PLB script
is automatically executed after DBMSPOOL.SQL runs.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-27

Using sys.dbms_shared_pool (continued)
Syntax Definitions

where: object_name Name of the object to keep
 flag (Optional) If this is not specified, then the

package assumes that the first parameter is
the name of a package/procedure/function
and resolves the name.

'P' or 'p' indicates a
package/procedure/function. This is the
default.

'T' or 't' indicates a type.

'R' or 'r' indicates a trigger.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-28

Copyright © 2004, Oracle. All rights reserved.

Pinning Objects

• Pin objects only when necessary.
• The keep procedure first queues an object for

pinning before loading it.
• Pin all objects soon after instance startup to

ensure contiguous blocks of memory.

Guidelines for Pinning Objects
• Pin objects only when necessary. Otherwise, you may end up setting aside too much

memory, which can have a negative impact on performance.
• The keep procedure does not immediately load a package into the shared pool; it queues

the package for pinning. The package is loaded into the shared pool only when the package
is first referenced, either to execute a module or to use one of its declared objects, such as a
global variable or a cursor.

• Pin all your objects in the shared pool as soon after instance startup as possible, so that
contiguous blocks of memory can be set aside for large objects.

Note: You can create a trigger that fires when the database is opened (STARTUP). Using this
trigger is a good way to pin packages at the very beginning.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-29

Copyright © 2004, Oracle. All rights reserved.

Identifying Network Issues

CPU

Memory

CPU CPU

Memory Memory

• Reduce memory usage
• Use client-side PL/SQL
• Avoid unnecessary parsing
• Utilize array processingNetwork

Guidelines for Reducing Network Traffic
Reducing network traffic is one of the key components of tuning because network issues impact
performance. When your code is passed to the database, a significant amount of time is spent in
the network. The following are some guidelines for reducing network traffic to improve
performance:

• When passing host cursor variables to PL/SQL, you can reduce network traffic by grouping
OPEN-FOR statements. For example, the following PL/SQL block opens five cursor
variables in a single round trip:

/* anonymous PL/SQL block in host environment */
BEGIN

OPEN :cust_cv FOR SELECT * FROM customers;
OPEN :order_cv FOR SELECT * FROM orders;
OPEN :ord_item_cv FOR SELECT * FROM order_items;
OPEN :wh_cv FOR SELECT * FROM warehouses;

END;

• When you pass host cursor variables to a PL/SQL block for opening, the query work areas
to which they point remain accessible after the block completes so that your OCI or Pro*C
program can use these work areas for ordinary cursor operations.

• When finished, close the cursors.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-30

Copyright © 2004, Oracle. All rights reserved.

Identifying Network Issues

• Group OPEN-FOR statements when passing host
cursor variables to PL/SQL.

• Use client-side PL/SQL when appropriate.
• Avoid unnecessary reparsing.
• Utilize array processing.
• Use table functions to improve performance.
• Use the RETURNING clause when appropriate.

Guidelines for Reducing Network Traffic (continued)
• If your application is written using development tools that have a PL/SQL engine in the

client tool, as in the Oracle Developer tools, and the code is not SQL intensive, reduce the
load on the server by doing more of your work in the client and let the client-side PL/SQL
engine handle your PL/SQL code.

• When a PL/SQL block is sent from the client to the server, the client can keep a reference
to the parsed statement. This reference is the statement handle when using OCI, or the
cursor cache entry when using precompilers. If your application is likely to issue the same
code more than once, it needs to parse it only the first time. For all subsequent executions,
the original parsed statement can be used, possibly with different values for the bind
variables. This technique is more appropriate with OCI and precompilers because they give
you more control over cursor processing.
In PL/SQL, this technique can be used with the dbms_sql package, in which the interface
is similar to OCI. After a statement is parsed with dbms_sql.parse, it can be executed
multiple times.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-31

Guidelines for Reducing Network Traffic (continued)
• OCI and precompilers have the ability to send and retrieve data using host arrays. With this

technique, large amounts of data can travel over the network as one unit rather than taking
several trips. While PL/SQL does not directly use this array interface, if you are using
PL/SQL from OCI or precompilers, take advantage of this interface.

• Use the RETURNING clause.
• By using table functions, rows of the result set can be returned a few at a time, reducing the

memory overhead for producing large result sets within a function.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-32

Copyright © 2004, Oracle. All rights reserved.

Native and Interpreted Compilation

Natively compiled code
• Translated C and compiled
• Copied to a code library

PL/SQL source

m-code Native code library in OS directory

C compiler
Translated
to C code

Interpreted code
• Compiled to m-code
• Stored in the database

Native and Interpreted Compilation
On the left of the vertical dotted line, a program unit processed as interpreted PL/SQL is
compiled into machine-readable code (m-code), which is stored in the database and interpreted at
run time.
On the right of the vertical dotted line, the PL/SQL source is subjected to native compilation,
where the PL/SQL statements are compiled to m-code that is translated into C code. The m-code
is not retained. The C code is compiled with the usual C compiler and linked to the Oracle
process using native machine code library. The code library is stored in the database but copied
to a specified directory path in the operating system, from which it is loaded at run time. Native
code bypasses the typical run-time interpretation of code.
Note: Native compilation cannot do much to speed up SQL statements called from PL/SQL, but
it is most effective for computation-intensive PL/SQL procedures that do not spend most of their
time executing SQL.
You can natively compile both the supplied Oracle packages and your own PL/SQL code.
Compiling all PL/SQL code in the database means that you see the speedup in your own code
and all the built-in PL/SQL packages. If you decide that you will have significant performance
gains in database operations using PL/SQL native compilation, Oracle recommends that you
compile the whole database using the NATIVE setting.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-33

Native and Interpreted Compilation (continued)
Features and Benefits of Native Compilation
The PL/SQL native compilation process makes use of a makefile, called
spnc_makefile.mk, located in the $ORACLE_HOME/plsql directory. The makefile is
processed by the Make utility that invokes the C compiler, which is the linker on the supported
operating system, to compile and link the resulting C code into shared libraries. The shared
libraries are stored inside the database and are copied to the file system. At run time, the shared
libraries are loaded and run when the PL/SQL subprogram is invoked.
In accordance with Optimal Flexible Architecture (OFA) recommendations, the shared libraries
should be stored near the data files. C code runs faster than PL/SQL, but it takes longer to
compile than m-code. PL/SQL native compilation provides the greatest performance gains for
computation-intensive procedural operations.
Examples of such operations are data warehouse applications and applications with extensive
server-side transformations of data for display. In such cases, expect speed increases of up to
30%.
Limitations of Native Compilation
As stated, the key benefit of natively compiled code is faster execution, particularly for
computationally intensive PL/SQL code, as much as 30% more. Consider that:

• Debugging tools for PL/SQL do not handle procedures compiled for native execution.
Therefore, use interpreted compilation in development environments, and natively compile
the code in a production environment.

• The compilation time increases when using native compilation, because of the requirement
to translate the PL/SQL statement to its C equivalent and execute the Make utility to
invoke the C compiler and linker for generating the resulting compiled code library.

• If many procedures and packages (more than 5,000) are compiled for native execution, a
large number of shared objects in a single directory may affect performance. The operating
system directory limitations can be managed by automatically distributing libraries across
several subdirectories. To do this, perform the following tasks before natively compiling
the PL/SQL code:

- Set the PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT database initialization
parameter to a large value, such as 1,000, before creating the database or compiling
the PL/SQL packages or procedures.

- Create PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT subdirectories in the path
specified in the PLSQL_NATIVE_LIBRARY_DIR initialization parameter.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-34

Copyright © 2004, Oracle. All rights reserved.

Switching Between Native
and Interpreted Compilation

• Setting native compilation
– For the system:

– For the session:

• Setting interpreted compilation
– For the system level:

– For the session:

ALTER SYSTEM SET plsql_compiler_flags='NATIVE';

ALTER SESSION SET plsql_compiler_flags='NATIVE';

ALTER SYSTEM
SET plsql_compiler_flags='INTERPRETED';

ALTER SESSION
SET plsql_compiler_flags='INTERPRETED';

Switching Between Native and Interpreted Compilation
The PLSQL_COMPILER_FLAGS parameter determines whether PL/SQL code is natively
compiled or interpreted, and determines whether debug information is included. The default
setting is INTERPRETED,NON_DEBUG. To enable PL/SQL native compilation, you must set
the value of PLSQL_COMPILER_FLAGS to NATIVE.
If you compile the whole database as NATIVE, then Oracle recommends that you set
PLSQL_COMPILER_FLAGS at the system level.
To set compilation type at the system level (usually done by a DBA), execute the following
statements:

ALTER SYSTEM SET plsql_compiler_flags='NATIVE';
ALTER SYSTEM SET plsql_compiler_flags='INTERPRETED';

To set compilation type at the session level, execute one of the following statements:
ALTER SESSION SET plsql_compiler_flags='NATIVE';
ALTER SESSION SET plsql_compiler_flags='INTERPRETED';

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-35

Switching Between Native and Interpreted Compilation (continued)
Parameters Influencing Compilation
In all circumstances, whether you intend to compile a database as NATIVE or you intend to
compile individual PL/SQL units at the session level, you must set all required parameters.
The system parameters are set in the initSID.ora file by using the SPFILE mechanism.
Two parameters that are set as system-level parameters are the following:

• The PLSQL_NATIVE_LIBRARY_DIR value, which specifies the full path and directory
name used to store the shared libraries that contain natively compiled PL/SQL code

• The PLSQL_NATIVE_LIBRARY_SUBDIR_COUNT value, which specifies the number of
subdirectories in the directory specified by the PLSQL_NATIVE_LIBRARY_DIR
parameter. Use a script to create directories with consistent names (for example, d0, d1,
d2, and so on), and then the libraries are automatically distributed among these
subdirectories by the PL/SQL compiler.

By default, PL/SQL program units are kept in one directory.
The PLSQL_COMPILER_FLAGS parameter can be set to a value of NATIVE or
INTERPRETED, either as a database initialization for a systemwide default or for each session
using an ALTER SESSION statement.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-36

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Tune your PL/SQL application. Tuning involves:

– Using the RETURNING clause and bulk binds
when appropriate

– Rephrasing conditional statements
– Identifying data type and constraint issues
– Understanding when to use SQL and PL/SQL

• Tune the shared pool by using the Oracle-supplied
package dbms_shared_pool

• Identify network issues that impact processing
• Use native compilation for faster PL/SQL

execution

Summary
There are several methods that help you tune your PL/SQL application.
When tuning PL/SQL code, consider using the RETURNING clause and/or bulk binds to improve
processing. Be aware of conditional statements with an OR clause. Place the fastest processing
condition first. There are several data type and constraint issues that can help in tuning an
application.
You can use the Oracle-supplied package dbms_shared_pool to pin frequently used
packages, procedures, and functions to the shared pool.
You can reduce network traffic by:

• Reducing memory usage
• Using client-side PL/SQL
• Avoiding unnecessary parsing
• Utilizing array processing

By using native compilation, you can benefit from performance gains for computation-intensive
procedural operations.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-37

Copyright © 2004, Oracle. All rights reserved.

Practice Overview

This practice covers the following topics:
• Pinning a package
• Tuning PL/SQL code to improve performance
• Coding with bulk binds to improve performance

Practice Overview
In this practice, you will tune some of the code you have created for the OE application.

• Use dbms_shared_pool to pin a package in memory
• Break a previously built subroutine in smaller executable sections
• Pass collections into subroutines
• Add error handling for BULK INSERT

For detailed instructions about performing this practice, see Appendix A, “Practice Solutions.”

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-38

Practice 7
1. In this exercise, you will pin the fine-grained access package created in Lesson 6.

Note: If you have not completed practice 6, run the following files in the $HOME/soln
folder:

sol_06_02.sql
sol_06_03.sql
sol_06_04.sql
sol_06_05.sql

Using the DBMS_SHARED_POOL.KEEP procedure, pin your SALES_ORDERS_PKG.

Execute the DBMS_SHARED_POOL.SIZES procedure to see the objects in the shared
pool that are larger than 500 kilobytes.

2. Open the lab_07_02.sql file and examine the package (the package body is shown
below):

CREATE OR REPLACE PACKAGE BODY credit_card_pkg
IS

PROCEDURE update_card_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no

VARCHAR2)
IS

v_card_info typ_cr_card_nst;
i INTEGER;

BEGIN
SELECT credit_cards

INTO v_card_info
FROM customers
WHERE customer_id = p_cust_id;

IF v_card_info.EXISTS(1) THEN -- cards exist, add more
i := v_card_info.LAST;
v_card_info.EXTEND(1);
v_card_info(i+1) := typ_cr_card(p_card_type,

p_card_no);
UPDATE customers

SET credit_cards = v_card_info
WHERE customer_id = p_cust_id;

ELSE -- no cards for this customer yet, construct one
UPDATE customers

SET credit_cards = typ_cr_card_nst
(typ_cr_card(p_card_type, p_card_no))

WHERE customer_id = p_cust_id;
END IF;

END update_card_info;

-- continued on next page

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-39

Practice 7 (continued)
-- continued from previous page.

PROCEDURE display_card_info
(p_cust_id NUMBER)

IS
v_card_info typ_cr_card_nst;
i INTEGER;

BEGIN
SELECT credit_cards

INTO v_card_info
FROM customers
WHERE customer_id = p_cust_id;

IF v_card_info.EXISTS(1) THEN
FOR idx IN v_card_info.FIRST..v_card_info.LAST LOOP

DBMS_OUTPUT.PUT('Card Type: ' ||
v_card_info(idx).card_type || ' ');

DBMS_OUTPUT.PUT_LINE('/ Card No: ' ||
v_card_info(idx).card_num);

END LOOP;
ELSE

DBMS_OUTPUT.PUT_LINE('Customer has no credit cards.');
END IF;

END display_card_info;
END credit_card_pkg; -- package body
/

This code needs to be improved. The following issues exist in the code:
• The local variables use the INTEGER data type.
• The same SELECT statement is run in the two procedures.
• The same IF v_card_info.EXISTS(1) THEN statement is in the two procedures.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-40

Practice 7 (continued)
3. To improve the code, make the following modifications:

Change the local INTEGER variables to use a more efficient data type.

Move the duplicated code into a function. The package specification for the modification
is:

CREATE OR REPLACE PACKAGE credit_card_pkg
IS

FUNCTION cust_card_info
(p_cust_id NUMBER, p_card_info IN OUT typ_cr_card_nst)
RETURN BOOLEAN;

PROCEDURE update_card_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no

VARCHAR2);
PROCEDURE display_card_info
(p_cust_id NUMBER);

END credit_card_pkg; -- package spec
/

Have the function return TRUE if the customer has credit cards. The function should return
FALSE if the customer does not have credit cards. Pass into the function an uninitialized
nested table. The function places the credit card information into this uninitialized
parameter.

4. Test your modified code with the following data:
EXECUTE credit_card_pkg.update_card_info –

(120, 'AM EX', 55555555555)
PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.display_card_info(120)
Card Type: Visa / Card No: 11111111
Card Type: MC / Card No: 2323232323
Card Type: DC / Card No: 4444444
Card Type: AM EX / Card No: 55555555555

PL/SQL procedure successfully completed.

-- Note: If you did not complete Practice 3, your results
-- will be:

EXECUTE credit_card_pkg.display_card_info(120)
Card Type: AM EX / Card No: 55555555555

PL/SQL procedure successfully completed.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-41

Practice 7 (continued)
5. Open file lab_07_05a.sql. It contains the modified code from the previous question

#3.

You need to modify the UPDATE_CARD_INFO procedure to return information (using the
RETURNING clause) about the credit cards being updated. Assume that this information
will be used by another application developer in your team, who is writing a graphical
reporting utility on customer credit cards, after a customer’s credit card information is
changed.

Modify the code to use the RETURNING clause to find information about the row affected
by the UPDATE statements.

You can test your modified code with the following procedure (contained in
lab_07_05b.sql):

CREATE OR REPLACE PROCEDURE test_credit_update_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no NUMBER)
IS

v_card_info typ_cr_card_nst;
BEGIN

credit_card_pkg.update_card_info
(p_cust_id, p_card_type, p_card_no, v_card_info);

END test_credit_update_info;
/

Test your code with the following statements set in boldface:
EXECUTE test_credit_update_info(125, 'AM EX', 123456789)
PL/SQL procedure successfully completed.

SELECT credit_cards FROM customers WHERE customer_id = 125;
CREDIT_CARDS(CARD_TYPE, CARD_NUM)

TYP_CR_CARD_NST(TYP_CR_CARD('AM EX', 123456789))

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-42

Practice 7 (continued)
6. In this exercise, you will test exception handling with the SAVED EXCEPTIONS clause.

Run the lab_07_06a.sql file to create a test table:
CREATE TABLE card_table
(accepted_cards VARCHAR2(50) NOT NULL);

Open the lab_07_06b.sql file and run the contents:
DECLARE

type typ_cards is table of VARCHAR2(50);
v_cards typ_cards := typ_cards
('Citigroup Visa', 'Nationscard MasterCard',

'Federal American Express', 'Citizens Visa',
'International Discoverer', 'United Diners Club');

BEGIN
v_cards.Delete(3);
v_cards.DELETE(6);
FORALL j IN v_cards.first..v_cards.last

SAVE EXCEPTIONS
EXECUTE IMMEDIATE
'insert into card_table (accepted_cards) values (
:the_card)'
USING v_cards(j);

/

Note the output:__

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 7-43

Practice 7 (continued)
6. (continued)

Open the lab_07_06c.sql file and run the contents:

DECLARE
type typ_cards is table of VARCHAR2(50);
v_cards typ_cards := typ_cards
('Citigroup Visa', 'Nationscard MasterCard',

'Federal American Express', 'Citizens Visa',
'International Discoverer', 'United Diners Club');

bulk_errors EXCEPTION;
PRAGMA exception_init (bulk_errors, -24381);

BEGIN
v_cards.Delete(3);
v_cards.DELETE(6);
FORALL j IN v_cards.first..v_cards.last

SAVE EXCEPTIONS
EXECUTE IMMEDIATE
'insert into card_table (accepted_cards) values (
:the_card)'
USING v_cards(j);

EXCEPTION
WHEN bulk_errors THEN

FOR j IN 1..sql%bulk_exceptions.count
LOOP

Dbms_Output.Put_Line (
TO_CHAR(sql%bulk_exceptions(j).error_index) || ':
' || SQLERRM(-sql%bulk_exceptions(j).error_code));

END LOOP;
END;
/

Note the output:__

Why is the output different?

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

Analyzing PL/SQL Code

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-2

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Find information about your PL/SQL code
• Trace PL/SQL program execution
• Profile PL/SQL applications

Supplied
packages

Dictionary views Code analysis Interpret
information

Objectives
In this lesson, you learn how to write PL/SQL routines that analyze the PL/SQL applications.
You are introduced to testing PL/SQL code, tracing PL/SQL code, and profiling PL/SQL code.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-3

Copyright © 2004, Oracle. All rights reserved.

Finding Coding Information

• Use the dictionary views:
– ALL_ARGUMENTS

– ALL_OBJECTS

– ALL_SOURCE

– ALL_PROCEDURES

– ALL_DEPENDENCIES

• Use the supplied packages:
– dbms_describe

– dbms_utility

Finding Information on Your PL/SQL Code
The Oracle dictionary views store information on your compiled PL/SQL code. You can write
SQL statements against the views to find information about your code.

You can also use the Oracle-supplied DBMS_DESCRIBE package to obtain information about a
PL/SQL object. The package contains the DESCRIBE_PROCEDURE procedure, which provides
a brief description of a PL/SQL stored procedure. It takes the name of a stored procedure and
returns information about each parameter of that procedure.
You can use the DBMS_UTILITY supplied package to follow a call stack and an exception
stack.

Dictionary View Description
ALL_SOURCE Includes the lines of source code for all the programs you

modify
ALL_ARGUMENTS Includes information about the parameters to the procedures

and functions you can call
ALL_PROCEDURES Contains the list of procedures and functions you can execute
ALL_DEPENDENCIES Is one of the several views that give you information about

dependencies between database objects.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-4

Copyright © 2004, Oracle. All rights reserved.

Finding Coding Information

Find all instances of CHAR in your code:

SELECT NAME, line, text
FROM user_source
WHERE INSTR (UPPER(text), ' CHAR') > 0

OR INSTR (UPPER(text), ' CHAR(') > 0
OR INSTR (UPPER(text), ' CHAR (') > 0;

NAME LINE TEXT
----------------- ---- --------------------------------
CUST_ADDRESS_TYP 6 , country_id CHAR(2)

Finding Data Types
You may want to find all occurrences of the CHAR data type. The CHAR data type is fixed in
length and can cause false negatives on comparisons to VARCHAR2 strings. By finding the CHAR
data type, you can modify the object, if appropriate, and change it to VARCHAR2.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-5

Copyright © 2004, Oracle. All rights reserved.

Finding Coding Information

Create a package with various queries that you can
easily call:

CREATE OR REPLACE PACKAGE query_code_pkg
AUTHID CURRENT_USER
IS
PROCEDURE find_text_in_code (str IN VARCHAR2);
PROCEDURE encap_compliance ;

END query_code_pkg;
/

Creating a Package to Query Code
A better idea is to create a package to hold various queries that you can easily call. The
QUERY_CODE_PKG will hold two validation procedures:
The FIND_TEXT_IN_CODE procedure displays all programs with a specified character string.
It queries USER_SOURCE to find occurrences of a text string passed as a parameter. For
efficiency, the BULK COLLECT statement is used to retrieve all matching rows into the
collection variable.
The ENCAP_COMPLIANCE procedure identifies programs that reference a table directly. This
procedure queries the ALL_DEPENDENCIES view to find PL/SQL code objects that directly
reference a table or a view.
You can also include a procedure to validate a set of standards for exception handling.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-6

Creating a Package to Query Code (continued)
QUERY_CODE_PKG Code

CREATE OR REPLACE PACKAGE BODY query_code_pkg IS
PROCEDURE find_text_in_code (str IN VARCHAR2)
IS

TYPE info_rt IS RECORD (NAME user_source.NAME%TYPE,
text user_source.text%TYPE);

TYPE info_aat IS TABLE OF info_rt INDEX BY PLS_INTEGER;
info_aa info_aat;

BEGIN
SELECT NAME || '-' || line, text
BULK COLLECT INTO info_aa FROM user_source

WHERE UPPER (text) LIKE '%' || UPPER (str) || '%'
AND NAME != 'VALSTD' AND NAME != 'ERRNUMS';

DBMS_OUTPUT.PUT_LINE ('Checking for presence of '||
str || ':');

FOR indx IN info_aa.FIRST .. info_aa.LAST LOOP
DBMS_OUTPUT.PUT_LINE (

info_aa (indx).NAME|| ',' || info_aa (indx).text);
END LOOP;

END find_text_in_code;

PROCEDURE encap_compliance IS
SUBTYPE qualified_name_t IS VARCHAR2 (200);
TYPE refby_rt IS RECORD (NAME qualified_name_t,

referenced_by qualified_name_t);
TYPE refby_aat IS TABLE OF refby_rt INDEX BY PLS_INTEGER;
refby_aa refby_aat;

BEGIN
SELECT owner || '.' || NAME refs_table

, referenced_owner || '.' || referenced_name
AS table_referenced

BULK COLLECT INTO refby_aa
FROM all_dependencies
WHERE owner = USER
AND TYPE IN ('PACKAGE', 'PACKAGE BODY',

'PROCEDURE', 'FUNCTION')
AND referenced_type IN ('TABLE', 'VIEW')
AND referenced_owner NOT IN ('SYS', 'SYSTEM')

ORDER BY owner, NAME, referenced_owner, referenced_name;
DBMS_OUTPUT.PUT_LINE ('Programs that reference

tables or views');
FOR indx IN refby_aa.FIRST .. refby_aa.LAST LOOP

DBMS_OUTPUT.PUT_LINE (refby_aa (indx).NAME || ',' ||
refby_aa (indx).referenced_by);

END LOOP;
END encap_compliance;
END query_code_pkg;
/

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-7

Copyright © 2004, Oracle. All rights reserved.

Finding Coding Information

EXECUTE query_code_pkg.encap_compliance
Programs that reference tables or views
OE.PROCESS_CUSTOMERS,OE.CUSTOMERS
OE.PROF_REPORT_UTILITIES,OE.PLSQL_PROFILER_DATA
OE.PROF_REPORT_UTILITIES,OE.PLSQL_PROFILER_LINES_CROSS_RUN
OE.PROF_REPORT_UTILITIES,OE.PLSQL_PROFILER_RUNS
OE.PROF_REPORT_UTILITIES,OE.PLSQL_PROFILER_UNITS
...
PL/SQL procedure successfully completed.

EXECUTE query_code_pkg.find_text_in_code('customers')
Checking for presence of customers:
REPORT_CREDIT-2, (p_email customers.cust_last_name%TYPE,
REPORT_CREDIT-3, p_credit_limit customers.credit_limit%TYPE)
REPORT_CREDIT-5, TYPE typ_name IS TABLE OF customers%ROWTYPE
INDEX BY customers.cust_email%TYPE;
REPORT_CREDIT-12, FOR rec IN (SELECT * FROM customers WHERE
cust_email IS NOT NULL)
PROCESS_CUSTOMERS-1,PROCEDURE process_customers
...
PL/SQL procedure successfully completed.

1

2

QUERY_CODE_PKG Examples
In the first example, the ENCAP_COMPLIANCE procedure displays all PL/SQL code objects
that reference a table or view directly. Both the code name and table or view name are listed in
the output.
In the second example, the FIND_TEXT_IN_CODE procedure returns all PL/SQL code objects
that contain the “customers” text string. The code name, line number, and line are listed in the
output.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-8

Copyright © 2004, Oracle. All rights reserved.

Using DBMS_DESCRIBE

• Use it to get information about a PL/SQL object.
• It contains one procedure: DESCRIBE_PROCEDURE.
• Includes:

– Three scalar IN parameters
– One scalar OUT parameter
– Twelve associative array OUT parameters

object_name

null

null

describe_procedure

The DBMS_DESCRIBE Package
You can use the DBMS_DESCRIBE package to find information about your procedures. It
contains one procedure, named DESCRIBE_PROCEDURE. This routine accepts the name of the
procedure that you are inquiring about. It returns detailed parameter information in a set of
associative arrays. The details are numerically coded. You can find the following information
from the results returned:

• Overload: If overloaded, it holds a value for each version of the procedure.
• Position: Position of the argument in the parameter list. 0 is reserved for the RETURN

information of a function.
• Level: For composite types only; it holds the level of the data type
• Argument name: Name of the argument
• Data type: A numerically coded value representing a data type
• Default value: 0 for no default value, 1 if the argument has a default value
• Parameter mode: 0 = IN, 1 = OUT, 2 = IN OUT

Note: This is not the complete list of values returned from the DESCRIBE_PROCEDURE
routine. For a complete list, see the PL/SQL Packages and Types Reference 10g Release 1
reference manual.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-9

Copyright © 2004, Oracle. All rights reserved.

Using DBMS_DESCRIBE

Create a package to call the
DBMS_DESCRIBE.DESCRIBE_PROCEDURE routine:

CREATE OR REPLACE PACKAGE use_dbms_describe
IS
PROCEDURE get_data (p_obj_name VARCHAR2);

END use_dbms_describe;
/

EXEC use_dbms_describe.get_data('ORDERS_APP_PKG.THE_PREDICATE')

Name Mode Position Datatype
This is the RETURN data for the function: 1 0 1
P_SCHEMA 0 1 1
P_NAME 0 2 1

PL/SQL procedure successfully completed.

1

2

The DESCRIBE_PROCEDURE Routine
Because the DESCRIBE_PROCEDURE returns information about your parameters in a set of
associative arrays, it is easiest to define a package to call and handle the information returned
from it.
In the first example shown on the slide above, the specification for the USE_DBMS_DESCRIBE
package is defined. This package holds one procedure, GET_DATA. This GET_DATA routine
calls the DBMS_DESCRIBE.DESCRIBE_PROCEDURE routine. The implementation of the
USE_DBMS_DESCRIBE package is shown on the next page. Note that several associative array
variables are defined to hold the values returned via OUT parameters from the
DESCRIBE_PROCEDURE routine. Each of these arrays uses the predefined package types:

TYPE VARCHAR2_TABLE IS TABLE OF VARCHAR2(30)
INDEX BY BINARY_INTEGER;

TYPE NUMBER_TABLE IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;

In the call to the DESCRIBE_PROCEDURE routine, you need to pass three parameters: the name
of the procedure that you are inquiring about and two null values. These null values are reserved
for future use.
In the second example shown on the slide above, the results are displayed for the parameters of
the ORDERS_APP_PKG.THE_PREDICATE function. Data type of 1 indicates it is a
VARCHAR2 data type.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-10

The DESCRIBE_PROCEDURE Routine (continued)
Calling DBMS_DESCRIBE.DESCRIBE_PROCEDURE

CREATE OR REPLACE PACKAGE use_dbms_describe IS
PROCEDURE get_data (p_obj_name VARCHAR2);

END use_dbms_describe;
/
CREATE OR REPLACE PACKAGE BODY use_dbms_describe IS

PROCEDURE get_data (p_obj_name VARCHAR2)
IS

v_overload DBMS_DESCRIBE.NUMBER_TABLE;
v_position DBMS_DESCRIBE.NUMBER_TABLE;
v_level DBMS_DESCRIBE.NUMBER_TABLE;
v_arg_name DBMS_DESCRIBE.VARCHAR2_TABLE;
v_datatype DBMS_DESCRIBE.NUMBER_TABLE;
v_def_value DBMS_DESCRIBE.NUMBER_TABLE;
v_in_out DBMS_DESCRIBE.NUMBER_TABLE;
v_length DBMS_DESCRIBE.NUMBER_TABLE;
v_precision DBMS_DESCRIBE.NUMBER_TABLE;
v_scale DBMS_DESCRIBE.NUMBER_TABLE;
v_radix DBMS_DESCRIBE.NUMBER_TABLE;
v_spare DBMS_DESCRIBE.NUMBER_TABLE;

BEGIN
DBMS_DESCRIBE.DESCRIBE_PROCEDURE
(p_obj_name, null, null, -- these are the 3 in parameters
v_overload, v_position, v_level, v_arg_name,
v_datatype, v_def_value, v_in_out, v_length,
v_precision, v_scale, v_radix, v_spare, null);

IF v_in_out.FIRST IS NULL THEN
DBMS_OUTPUT.PUT_LINE ('No arguments to report.');

ELSE
DBMS_OUTPUT.PUT
('Name Mode');
DBMS_OUTPUT.PUT_LINE(' Position Datatype ');
FOR i IN v_arg_name.FIRST .. v_arg_name.LAST LOOP

IF v_position(i) = 0 THEN
DBMS_OUTPUT.PUT('This is the RETURN data for
the function: ');

ELSE
DBMS_OUTPUT.PUT (

rpad(v_arg_name(i), LENGTH(v_arg_name(i)) +
42-LENGTH(v_arg_name(i)), ' '));

END IF;
DBMS_OUTPUT.PUT(' ' ||

v_in_out(i) || ' ' || v_position(i) ||
' ' || v_datatype(i));

DBMS_OUTPUT.NEW_LINE;
END LOOP;

END IF;
END get_data;

END use_dbms_describe;

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-11

Copyright © 2004, Oracle. All rights reserved.

Using ALL_ARGUMENTS

Query the ALL_ARGUMENTS view to find information
about arguments for procedures and functions:

SELECT object_name, argument_name, in_out, position, data_type
FROM all_arguments
WHERE package_name = 'ORDERS_APP_PKG';

OBJECT_NAME ARGUMENT_NAME IN_OUT POSITION DATA_TYPE
----------------- --------------- -------- --------- -----------
THE_PREDICATE P_NAME IN 2 VARCHAR2
THE_PREDICATE P_SCHEMA IN 1 VARCHAR2
THE_PREDICATE OUT 0 VARCHAR2
SET_APP_CONTEXT IN 1
SHOW_APP_CONTEXT IN 1

Using the ALL_ARGUMENTS Dictionary View
You can also query the ALL_ARGUMENTS dictionary view to find out information about the
arguments of procedures and functions to which you have access. Similar to using
DBMS_DESCRIBE, the ALL_ARGUMENTS view returns information in textual rather than
numeric form. There is overlap between the two, but there is also unique information to be found
both in DBMS_DESCRIBE and ALL_ARGUMENTS.
In the example shown above, the argument name, mode, position, and data type are returned for
the ORDERS_APP_PKG. Note the following:

• A position of 1 and a sequence and level of 0 indicates that the procedure has no
arguments.

• For a function that has no arguments, it is displayed as a single row for the RETURN clause,
with a position of 0.

• The argument name for the RETURN clause is NULL.
• If programs are overloaded, the OVERLOAD column (not shown above) indicates the Nth

overloading; otherwise, it is NULL.
• The DATA_LEVEL column (not shown above) value of 0 identifies a parameter as it

appears in the program specification.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-12

Copyright © 2004, Oracle. All rights reserved.

Using ALL_ARGUMENTS

Other column information:
• Details about the data type are found in the

DATA_TYPE and TYPE_ columns.
• All arguments in the parameter list are at level 0.
• For composite parameters, the individual elements

of the composite are assigned levels, starting at 1.
• The POSITION-DATA_LEVEL column combination

is unique only for a level 0 argument (the actual
parameter, not its subtypes if it is a composite).

Using the ALL_ARGUMENTS Dictionary View (continued)
The DATA_TYPE column holds the generic PL/SQL data type. To find more information about
the data type, query the TYPE_ columns.
• TYPE_NAME: Holds the name of the type of the argument. If the type is a package local

type (that is, it is declared in a package specification), then this column displays the name
of the package.

• TYPE_SUBNAME: Is relevant only for package local types. Displays the name of the type
declared in the package identified in the TYPE_NAME column. For example, if the data
type is a PL/SQL table, you can find out which type of table only by looking at the
TYPE_SUBNAME column.

Note: The DEFAULT_VALUE and DEFAULT_LENGTH columns are reserved for future use and
do not currently contain information about a parameter’s default value. You can use
DBMS_DESCRIBE to find some default value information. In this package, the parameter
DEFAULT_VALUE returns 1 if there is a default value; otherwise, it returns 0.
By combining the information from DBMS_DESCRIBE and ALL_ARGUMENTS, you can find
valuable information about parameters, as well as about how your PL/SQL routines are
overloaded.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-13

Copyright © 2004, Oracle. All rights reserved.

Using
DBMS_UTILITY.FORMAT_CALL_STACK

• This function returns the formatted text string of
the current call stack.

• Use it to find the line of code being executed.

EXECUTE third_one

----- PL/SQL Call Stack -----

object line object

handle number name

0x566ce8e0 4 procedure OE.FIRST_ONE

0x5803f7a8 5 procedure OE.SECOND_ONE

0x569c3770 6 procedure OE.THIRD_ONE

0x567ee3d0 1 anonymous block

PL/SQL procedure successfully completed.

The DBMS_UTILITY.FORMAT_CALL_STACK Function
Another tool available to you is the FORMAT_CALL_STACK function within the
DBMS_UTILITY supplied package. It returns the call stack in a formatted character string. The
results shown above were generated based on the following routines:

SET SERVEROUT ON
CREATE OR REPLACE PROCEDURE first_one
IS
BEGIN

dbms_output.put_line(
substr(dbms_utility.format_call_Stack, 1, 255));

END;
/

CREATE OR REPLACE PROCEDURE second_one
IS
BEGIN

null;
first_one;

END;
/
-- continued on next page

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-14

The DBMS_UTILITY.FORMAT_CALL_STACK Function (continued)
-- continued from previous page

CREATE OR REPLACE PROCEDURE third_one
IS
BEGIN

null;
null;
second_one;

END;
/

The output from the FORMAT_CALL_STACK function shows you the object handle number,
line number from where a routine is called, and the routine that is called. Note that the NULL;
statements added into the procedures shown are used to emphasize the line number from where
the routine is called.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-15

Copyright © 2004, Oracle. All rights reserved.

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE:
• Shows you the call stack at the point where an

exception is raised.
• Returns:

– The backtrace string
– A null string if there are no errors being handled

format_error_backtraceRaised
exception

Null string

Backtrace string

Finding Error Information

Using DBMS_UTILITY.FORMAT_ERROR_BACKTRACE
You can use this function to display the call stack at the point where an exception was raised,
even if the procedure is called from an exception handler in an outer scope. The output returned
is similar to the output of the SQLERRM function, but not subject to the same size limitation.

Using DBMS_UTILITY.FORMAT_ERROR_STACK
You can use this function to format the current error stack. It can be used in exception handlers
to view the full error stack. The function returns the error stack, up to 2,000 bytes.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-16

Copyright © 2004, Oracle. All rights reserved.

Finding Error Information

CREATE OR REPLACE PROCEDURE top_with_logging IS
-- NOTE: SQLERRM in principle gives the same info
-- as format_error_stack.
-- But SQLERRM is subject to some length limits,
-- while format_error_stack is not.

BEGIN
P5(); -- this procedure, in turn, calls others,

-- building a stack. P0 contains the exception
EXCEPTION

WHEN OTHERS THEN
log_errors ('Error_Stack...' || CHR(10) ||

DBMS_UTILITY.FORMAT_ERROR_STACK());
log_errors ('Error_Backtrace...' || CHR(10) ||

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE());
DBMS_OUTPUT.PUT_LINE ('----------');

END top_with_logging;
/

Using FORMAT_ERROR_STACK and FORMAT_ERROR_BACKTRACE
To show you the functionality of the FORMAT_ERROR_STACK and
FORMAT_ERROR_BACKTRACE functions, a TOP_WITH_LOGGING procedure is created. This
procedure calls the LOG_ERRORS procedure and passes to it the results of the
FORMAT_ERROR_STACK and FORMAT_ERROR_BACKTRACE functions.
The LOG_ERRORS procedure is shown on the next page.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-17

Copyright © 2004, Oracle. All rights reserved.

Finding Error Information

CREATE OR REPLACE PROCEDURE log_errors (i_buff IN VARCHAR2) IS
g_start_pos PLS_INTEGER := 1;
g_end_pos PLS_INTEGER;
FUNCTION output_one_line RETURN BOOLEAN IS
BEGIN
g_end_pos := INSTR (i_buff, CHR(10), g_start_pos);
CASE g_end_pos > 0
WHEN TRUE THEN
DBMS_OUTPUT.PUT_LINE (SUBSTR (i_buff,

g_start_pos, g_end_pos-g_start_pos));
g_start_pos := g_end_pos+1;
RETURN TRUE;

WHEN FALSE THEN
DBMS_OUTPUT.PUT_LINE (SUBSTR (i_buff, g_start_pos,

(LENGTH(i_buff)-g_start_pos)+1));
RETURN FALSE;

END CASE;
END output_one_line;

BEGIN
WHILE output_one_line() LOOP NULL;
END LOOP;

END log_errors;

The LOG_ERRORS Example
This procedure takes the return results of the FORMAT_ERROR_STACK and
FORMAT_ERROR_BACKTRACE functions as an IN string parameter, and reports it back to you
using DBMS_OUTPUT.PUT_LINE. The LOG_ERRORS procedure is called twice from the
TOP_WITH_LOGGING procedure. The first call passes the results of FORMAT_ERROR_STACK
and the second procedure passes the results of FORMAT_ERROR_BACKTRACE .
Note: You could use UTL_FILE instead of DBMS_OUTPUT to write and format the results to a
file.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-18

The LOG_ERRORS Example (continued)
Next, several procedures are created and one procedure calls another, so that a stack of
procedures is built. The P0 procedure raises a zero divide exception when it is invoked. The call
stack is:
TOP_WITH_LOGGING > P5 > P4 > P3 > P2 > P1 > P0

SET DOC OFF
SET FEEDBACK OFF
SET ECHO OFF

CREATE OR REPLACE PROCEDURE P0 IS
e_01476 EXCEPTION;
pragma exception_init (e_01476, -1476);

BEGIN
RAISE e_01476; -- this is a zero divide error

END P0;
/
CREATE OR REPLACE PROCEDURE P1 IS
BEGIN

P0();
END P1;
/
CREATE OR REPLACE PROCEDURE P2 IS
BEGIN

P1();
END P2;
/
CREATE OR REPLACE PROCEDURE P3 IS
BEGIN

P2();
END P3;
/
CREATE OR REPLACE PROCEDURE P4 IS

BEGIN P3();
END P4;
/
CREATE OR REPLACE PROCEDURE P5 IS

BEGIN P4();
END P5;
/
CREATE OR REPLACE PROCEDURE top IS
BEGIN

P5(); -- this procedure is used to show the results
-- without using the TOP_WITH_LOGGING routine.

END top;
/
SET FEEDBACK ON

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-19

Copyright © 2004, Oracle. All rights reserved.

Finding Error Information

Results:

EXECUTE top_with_logging
Error_Stack...
ORA-01476: divisor is equal to zero
Error_Backtrace...
ORA-06512: at "OE.P0", line 5
ORA-06512: at "OE.P1", line 3
ORA-06512: at "OE.P2", line 3
ORA-06512: at "OE.P3", line 3
ORA-06512: at "OE.P4", line 2
ORA-06512: at "OE.P5", line 2
ORA-06512: at "OE.TOP_WITH_LOGGING", line 7

Finding Error Information Results
The results from executing the TOP_WITH_LOGGING procedure is shown. Note that the error
stack displays the exception encountered. The backtrace information traces the flow of the
exception to its origin.
If you execute the TOP procedure without using the TOP_WITH_LOGGING procedure, these are
the results:

EXECUTE top
BEGIN top; END;
*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at "OE.P0", line 5
ORA-06512: at "OE.P1", line 3
ORA-06512: at "OE.P2", line 3
ORA-06512: at "OE.P3", line 3
ORA-06512: at "OE.P4", line 2
ORA-06512: at "OE.P5", line 2
ORA-06512: at "OE.TOP", line 3
ORA-06512: at line 1

Note that the line number reported is misleading.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-20

Copyright © 2004, Oracle. All rights reserved.

Enable specific subprograms for tracing (optional)

Start tracing session

Tracing PL/SQL Execution

Tracing PL/SQL execution provides you with a better
understanding of the program execution path, and is
possible by using the dbms_trace package.

Trace data
Trace data

Run application to be traced

Stop tracing session

Tracing PL/SQL Execution
In large and complex PL/SQL applications, it can sometimes become difficult to keep track of
subprogram calls when a number of them call each other. By tracing your PL/SQL code, you can
get a clearer idea of the paths and order in which your programs execute.
While a facility to trace your SQL code has been around for a while, Oracle now provides an
API for tracing the execution of PL/SQL programs on the server. You can use the Trace API,
implemented on the server as the dbms_trace package, to trace PL/SQL subprogram code.
Note: You cannot use PL/SQL tracing with the multithreaded server (MTS).

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-21

Procedure Description
set_plsql_trace Start tracing data dumping in a session (You provide

the trace level at which you want your PL/SQL code
traced as an IN parameter.)

clear_plsql_trace Stops trace data dumping in a session
plsql_trace_version Returns the version number of the trace package as an

out parameter

Copyright © 2004, Oracle. All rights reserved.

Tracing PL/SQL Execution

The dbms_trace package contains:
• set_plsql_trace (trace_level INTEGER)

• clear_plsql_trace

• plsql_trace_version

The dbms_trace Programs
dbms_trace provides subprograms to start and stop PL/SQL tracing in a session. The trace
data is collected as the program executes, and it is written out to data dictionary tables.

A typical trace session involves:
• Enabling specific subprograms for trace data collection (optional)
• Starting the PL/SQL tracing session (dbms_trace.set_plsql_trace)
• Running the application that is to be traced
• Stopping the PL/SQL tracing session (dbms_trace.clear_plsql_trace)

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-22

Copyright © 2004, Oracle. All rights reserved.

Tracing PL/SQL Execution

• Using set_plsql_trace, select a trace level to
identify how to trace calls, exceptions, SQL, and
lines of code.

• Trace-level constants:
– trace_all_calls

– trace_enabled_calls

– trace_all_sql

– trace_enabled_sql

– trace_all_exceptions

– trace_enabled_exceptions

– trace_enabled_lines

– trace_all_lines

– trace_stop

– trace_pause

– trace_resume

Specifying a Trace Level
During the trace session, there are two levels that you can specify to trace calls, exceptions, SQL,
and lines of code.
Trace Calls

• Level 1: Trace all calls. This corresponds to the constant trace_all_calls.
• Level 2: Trace calls to enabled program units only. This corresponds to the constant

trace_enabled_calls.
Trace Exceptions

• Level 1: Trace all exceptions. This corresponds to trace_all_exceptions.
• Level 2: Trace exceptions raised in enabled program units only. This corresponds to

trace_enabled_exceptions.
Trace SQL

• Level 1: Trace all SQL. This corresponds to the constant trace_all_sql.
• Level 2: Trace SQL in enabled program units only. This corresponds to the constant

trace_enabled_sql.
Trace Lines

• Level 1: Trace all lines. This corresponds to the constant trace_all_lines.
• Level 2: Trace lines in enabled program units only. This corresponds to the constant

trace_enabled_lines.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-23

Copyright © 2004, Oracle. All rights reserved.

Tracing PL/SQL: Steps

Enable specific
program units for
trace data
collection.

Use dbms_trace.
set_plsql_trace to
identify a trace level.

Start tracing by
running your PL/SQL
code.

Use dbms_trace.
clear_plsql_trace
to stop tracing data.

Read and interpret the
trace information.

1 2 3

45

Steps to Trace PL/SQL Code
There are five steps to trace PL/SQL code using the dbms_trace package:

1. Enable specific program units for trace data collection.
2. Use dbms_trace.set_plsql_trace to identify a trace level.
3. Run your PL/SQL code.
4. Use dbms_trace.clear_plsql_trace to stop tracing data.
5. Read and interpret the trace information.

The next few pages demonstrate the steps to accomplish PL/SQL tracing.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-24

Copyright © 2004, Oracle. All rights reserved.

ALTER [PROCEDURE | FUNCTION | PACKAGE]
<subprogram-name> COMPILE DEBUG [BODY];

Step 1: Enable Specific Subprograms

Enable specific subprograms with one of
the two methods:
• Enable a subprogram by compiling it with the

debug option:

• Recompile a specific subprogram with the
debug option:

ALTER SESSION SET PLSQL_DEBUG=true;

CREATE OR REPLACE

Step 1: Enable Specific Subprograms
Profiling large applications may produce a huge volume of data that can be difficult to manage.
Before turning on the trace facility, you have the option to control the volume of data collected
by enabling a specific subprogram for trace data collection. You can enable a subprogram by
compiling it with the debug option. You can do this in one of two ways:

• Enable a subprogram by compiling it with the ALTER SESSION debug option, then
compile the program unit by using CREATE OR REPLACE syntax:

ALTER SESSION SET PLSQL_DEBUG = true;
CREATE OR REPLACE ...

• Alternatively, recompile a specific subprogram with the debug option:
ALTER [PROCEDURE | FUNCTION | PACKAGE]

<subprogram-name> COMPILE DEBUG [BODY];

Note: The second method cannot be used for anonymous blocks.
Enabling specific subprograms allows you to:

• Limit and control the amount of trace data, especially in large applications.
• Obtain additional trace information that is otherwise not available. For example, during the

tracing session, if a subprogram calls another subprogram, the name of the called
subprogram gets included in the trace data if the calling subprogram was enabled by
compiling it in debug mode.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-25

Copyright © 2004, Oracle. All rights reserved.

• Specify the trace level by using
dbms_trace.set_plsql_trace:

• Execute the code to be traced:

EXECUTE my_program

Steps 2 and 3: Identify a Trace Level and
Start Tracing

EXECUTE DBMS_TRACE.SET_PLSQL_TRACE -

(tracelevel1 + tracelevel2 ...)

Steps 2 and 3: Specify a Trace Level and Start Tracing
To trace PL/SQL code execution by using dbms_trace, follow these steps:

• Start the trace session using the syntax in the slide. For example:
EXECUTE –
DBMS_TRACE.SET_PLSQL_TRACE(DBMS_TRACE.trace_all_calls)

Note:
• To specify additional trace levels in the argument, use the “+” sign between each trace

level value.
• Execute the PL/SQL code. The trace data gets written to either the Oracle server trace file

or to the data dictionary views.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-26

Copyright © 2004, Oracle. All rights reserved.

EXECUTE DBMS_TRACE.CLEAR_PLSQL_TRACE

Step 4: Turn Off Tracing

Remember to turn tracing off by using the
dbms_trace.clear_plsql_trace procedure.

Step 4: Turn Off Tracing
When you have completed tracing the PL/SQL program unit, turn tracing off by executing
dbms_trace.clear_plsql_trace. This stops any further writing to the trace file.
To avoid the overhead of writing the trace information, it is recommended that you turn off the
tracing when you are not using it.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-27

Copyright © 2004, Oracle. All rights reserved.

Step 5: Examine the Trace Information

Examine the trace information:
• Call tracing writes out the program unit type,

name, and stack depth.
• Exception tracing writes out the line number.

Step 5: Examine the Trace Information
• Lower trace levels supersede higher levels when tracing is activated for multiple tracing

levels.
• If tracing is requested only for enabled subprograms, and if the current subprogram is not

enabled, then no trace data is written.
• If the current subprogram is enabled, then call tracing writes out the subprogram type,

name, and stack depth.
• If the current subprogram is not enabled, then call tracing writes out the subprogram type,

line number, and stack depth.
• Exception tracing writes out the line number. Raising the exception shows information

about whether the exception is user-defined or predefined and, in the case of predefined
exceptions, the exception number.

Note: An enabled subprogram is compiled with the debug option.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-28

Copyright © 2004, Oracle. All rights reserved.

plsql_trace_runs and
plsql_trace_events

• Trace information is written to the following
dictionary views:
– plsql_trace_runs dictionary view
– plsql_trace_events dictionary view

• Run the tracetab.sql script to create the
dictionary views.

• You need privileges to view the trace information
in the dictionary views.

The plsql_trace_runs and plsql_trace_events Dictionary Views
All trace information is written to the dictionary views plsql_trace_runs and
plsql_trace_events. These views are created (typically by a DBA) by running the
tracetab.sql script. After the script is run, you need the SELECT privilege to view
information from these dictionary views.
Note: With the Oracle release 8.1.6 and later, the trace information is written to the dictionary
views. Prior to release 8.1.6, trace files were generated and trace information was written to the
file. The location of this file is determined by the USER_DUMP_DEST initialization parameter.
A file with a .trc extension is generated during the tracing.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-29

Copyright © 2004, Oracle. All rights reserved.

PROC_NAME PROC_LINE EVENT_PROC_NAME EVENT_COMMENT
---------- ---------- ---------------- ---------------
P5 1 Procedure Call
P4 1 P5 Procedure Call

2 rows selected.

plsql_trace_runs and
plsql_trace_events

SELECT proc_name, proc_line,
event_proc_name, event_comment

FROM sys.plsql_trace_events
WHERE event_proc_name = 'P5'
OR PROC_NAME = 'P5';

Query the plsql_trace_runs and plsql_trace_events Views
Use the dictionary views plsql_trace_runs and plsql_trace_events to view the
trace information generated by using the dbms_trace facility. plsql_trace_runs holds
generic information about traced programs such as the date, time, owner, and name of the traced
stored program. dbms_trace_events holds more specific information about the traced
subprograms.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-30

Copyright © 2004, Oracle. All rights reserved.

Profiling PL/SQL Applications

You can use profiling to evaluate performance and
identify areas that need improvement.
• Count the number of times each line was

executed.
• Determine how much time was spent on each line.
• Access the gathered information stored in

database tables, and can be viewed at any desired
level of granularity.

Profiling PL/SQL Applications
PL/SQL provides a tool called the Profiler that can be used to determine the execution time
profile (or run-time behavior) of applications. The Profiler can be used to figure out which part
of a particular application is running slowly. Such a tool is crucial in identifying performance
bottlenecks. It can help you focus your efforts on improving the performance of only the relevant
PL/SQL components, or, even better, the particular program segments where a lot of execution
time is being spent.
The Profiler provides functions for gathering “profile” statistics, such as the total number of
times each line was executed; time spent executing each line; and minimum and maximum
duration spent on execution of a given line of code. For example, you can generate profiling
information for all named library units used in a single session. This information is stored in
database tables that can be queried later.
Third-party vendors can use the profiling API to build graphical, customizable tools. You can
use Oracle 10g’s sample (demo) text-based report writer to gather meaningful data about their
applications. The script is called profrep.sql and you can find it in your
Oracle_home/PLSQL/demo directory. You can use the profiling API to analyze the
performance of your PL/SQL applications and to locate bottlenecks. You can then use the profile
information to appropriately tune your application.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-31

Copyright © 2004, Oracle. All rights reserved.

Profiling PL/SQL Applications

Use DBMS_PROFILER to profile existing PL/SQL
applications and to identify performance bottlenecks.

Start the profiler data collection.

Run the application.

Profiler
data

Profiler data

Stop the data collection.

Analyze profiler data.

Flush

Profiling PL/SQL Applications (continued)
The profiler API is implemented as a PL/SQL package, DBMS_PROFILER, which provides
services for collecting and persistently storing PL/SQL profiler data.
Note: To set up profiling, two scripts need to be run. The profload.sql script is run under
SYS. The proftab.sql script creates the profile dictionary tables. Run this script in the
schema under which you want to collect profiling statistics.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-32

Copyright © 2004, Oracle. All rights reserved.

Profiling PL/SQL Applications

The dbms_profiler package contains:
• START_PROFILER

• STOP_PROFILER

• FLUSH_DATA

• PAUSE_PROFILER

• RESUME_PROFILER

• GET_VERSION

• INTERNAL_VERSION_CHECK

Profiling PL/SQL Applications (continued)
Routine Description
START_PROFILER function Starts profiler data collection in the user’s session

STOP_PROFILER function Stops profiler data collection in the user’s session
FLUSH_DATA function Flushes profiler data collected in the user's session

PAUSE_PROFILER function Pauses profiler data collection
RESUME_PROFILER function Resumes profiler data collection
GET_VERSION procedure Gets the version of this API
INTERNAL_VERSION_
CHECK function

Verifies that this version of the DBMS_PROFILER package can
work with the implementation in the database

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-33

Copyright © 2004, Oracle. All rights reserved.

Profiling PL/SQL: Steps

Start profiler data
collection in the

run.

Execute PL/SQL code
for which profiler and

code coverage is
required.

Flush data to the
profiler tables.

Stop profiler data
collection.

Analyze the data
collected.

1 2 3

45

Steps to Profile PL/SQL Code
To profile PL/SQL code by using the dbms_profiler package, perform the following steps:

1. Start the profiler data collection by using dbms_profiler.start_run.
2. Execute the application that you are benchmarking.
3. Flush the data collected to the profiler tables by using dbms_profiler.flush_data.
4. Stop the profiler data collection by using dbms_profiler.stop_run.

Read and interpret the profiler information in the profiler tables:
• PLSQL_PROFILER_RUNS
• PLSQL_PROFILER_UNITS
• PLSQL_PROFILER_DATA

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-34

Copyright © 2004, Oracle. All rights reserved.

Profiling Example

CREATE OR REPLACE PROCEDURE my_profiler
(p_comment1 IN VARCHAR2, p_comment2 IN VARCHAR2)
IS
v_return_code NUMBER;

BEGIN
--start the profiler
v_return_code:=DBMS_PROFILER.START_PROFILER(p_comment1, p_comment2);
dbms_output.put_line ('Result from START: '||v_return_code);

-- now run a program...
query_code_pkg.find_text_in_code('customers');

--flush the collected data to the dictionary tables
v_return_code := DBMS_PROFILER.FLUSH_DATA;
dbms_output.put_line ('Result from FLUSH: '||v_return_code);

--stop profiling
v_return_code := DBMS_PROFILER.STOP_PROFILER;
dbms_output.put_line ('Result from STOP: '||v_return_code);

END;
/

Running the Profiler
The my_profiler sample procedure shown starts the profiler, runs an application, flushes the
data collected from the profiler to the dictionary tables, and stops the profiler. The functions
start_profiler, flush_data, and stop_profiler return a numeric value indicating
whether the function ran successfully. A return value of 0 indicates success.

start_profiler accepts two run comments as parameters. These two run comments default
to the sysdate and null if they are not specified.

Return Code Meaning
 0 Function ran successfully.
 1 A subprogram was called with an incorrect

parameter.
 2 Data flush operation failed. Check whether the

profiler tables have been created, are accessible, and
that there is adequate space.

 -1 There is a mismatch between package and database
implementation.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-35

Copyright © 2004, Oracle. All rights reserved.

Profiling Example

EXECUTE my_profiler('Benchmark: 1', 'This is the first run!')
Result from START: 0
...
Result from FLUSH: 0
Result from STOP: 0

PL/SQL procedure successfully completed.

SELECT runid, run_owner, run_date, run_comment,
run_comment1, run_total_time

FROM plsql_profiler_runs;

RUNID RUN_OWNER RUN_DATE RUN_COMMENT RUN_COMMEN RUN_TOTAL_TIME
---------- ---------- --------- ------------ ---------- --------------

1 OE 23-MAY-04 Benchmark: 1 This is th 7.2632E+10
e first ru
n!

Examining the Results
The code shown in the slide shows some basic statistics. The query retrieves the RUNID, which
can be used to find more information. ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-36

Copyright © 2004, Oracle. All rights reserved.

SELECT line#, total_occur, total_time, min_time, max_time
FROM plsql_profiler_data
WHERE runid = 1 AND unit_number = 2;

• Find the runid and unit_number:

• Use the runid and unit_number to view the
timings per line of code:

SELECT runid, unit_number, unit_type, unit_owner, unit_name
FROM plsql_profiler_units inner JOIN plsql_profiler_runs
USING (runid);

Profiling Example

RUNID UNIT_NUMBER UNIT_TYPE UNIT_OWNER UNIT_NAME
----- ----------- -------------- ----------- ------------

1 1 PROCEDURE OE MY_PROFILER
1 2 PACKAGE BODY OE QUERY_CODE_PKG

Profiling Example
Query from the PLSQL_PROFILER_DATA table to view the timings per line of code executed.

LINE# TOTAL_OCCUR TOTAL_TIME MIN_TIME MAX_TIME
---------- ----------- ---------- ---------- ----------

8 1 225494518 225494518 225494518
12 1 2948418 2948418 2948418
13 0 0 0 0
14 1 553980 553980 553980
15 0 0 0 0
16 1 703999 703999 703999
17 0 0 0 0
19 1 1036723 1036723 1036723
21 1 844140290 844140290 844140290
24 1 2911542 2911542 2911542
25 1 317638 317638 317638

LINE# TOTAL_OCCUR TOTAL_TIME MIN_TIME MAX_TIME
---------- ----------- ---------- ---------- ----------

30 1 3710247 3710247 3710247
12 rows selected.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-37

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use the dictionary views and supplied packages

to get information about your PL/SQL application
code

• Trace a PL/SQL application by using DBMS_TRACE
• Profile a PL/SQL application by using

DBMS_PROFILE

Supplied
packages

Dictionary views Code analysis Interpret
information

Summary
In this lesson, you learned how to use the dictionary views and supplied PL/SQL packages to
analyze your PL/SQL applications.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-38

Copyright © 2004, Oracle. All rights reserved.

Practice Overview

This practice covers the following topics:
• Tracing components in your OE application.
• Profiling components in your OE application.

Practice Overview
Using the OE application that you have created, write code to analyze your application.

• Trace components in your OE application
• Profile components in your OE application

For detailed instructions on performing this practice, see Appendix A, “Practice Solutions.”

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL 8-39

Practice 8
In this exercise, you will profile the CREDIT_CARD_PKG package created in an earlier lesson.

1. Run the lab_08_01.sql script to create the CREDIT_CARD_PKG package.

2. Run the proftab.sql script to create the profile tables under your schema.

3. Create a MY_PROFILER procedure to:
- Start the profiler
- Run the application

EXECUTE credit_card_pkg.update_card_info –
(130, 'AM EX', 121212121212)

- Flush the profiler data
- Stop the profiler

4. Execute the MY_PROFILER procedure.

5. Analyze the results of profiling in the PLSQL_PROFILER tables.

In this exercise, you will trace the CREDIT_CARD_PKG package.

6. Enable the CREDIT_CARD_PKG for tracing by using the ALTER statement with the
COMPILE DEBUG option.

7. Start the trace session and trace all calls.

8. Run the credit_card_pkg.update_card_info procedure with the following
data:
EXECUTE credit_card_pkg.update_card_info –

(135, 'DC', 987654321)

9. Disable tracing.

10. Examine the trace information by querying the trace tables.

PROC_NAME PROC_LINE EVENT_PROC_NAME EVENT_COMMENT
----------------- ---------- ------------------ ---------------------
CUST_CARD_INFO 4 UPDATE_CARD_INFO Procedure Call

CUST_CARD_INFO PL/SQL Internal Call
UPDATE_CARD_INFO 31 CUST_CARD_INFO Return from procedure

call
1 UPDATE_CARD_INFO Return from procedure

call

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

A
Practice Solutions

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 1: Solutions

PL/SQL Basics

1. What are the four key areas of the basic PL/SQL block? What happens in each area?
Header section: Names the program unit and identifies it as a procedure, function,
or package; also identifies any parameters that the code may use
Declarative section: Area used to define variables, constants, cursors, and
exceptions; starts with the keyword IS or AS Executable section: Main processing
area of the PL/SQL program; starts with the keyword BEGIN Exception handler
section: Optional error handling section; starts with the keyword EXCEPTION

2. What is a variable and where is it declared?
Variables are used to store data during PL/SQL block execution.
You can declare variables in the declarative part of any PL/SQL block,
subprogram, or package. Declarations allocate storage space for a value, specify its
data type, and name the storage location so that you can reference it. Declarations
can also assign an initial value and impose the NOT NULL constraint on the
variable.
Syntax: variable_name datatype[(size)][:= initial_value];

3. What is a constant and where is it declared?
Constants are variables that never change. Constants are declared and assigned a
value in the declarative section, before the executable section.
Syntax: constant_name CONSTANT datatype[(size)] :=
initial_value;

4. What are the different modes for parameters and what does each mode do?
There are three parameter modes: IN, OUT, and IN OUT. IN is the default and it
means a value is passed into the program. The OUT mode indicates that the
subprogram is passing a value generated in the subprogram out to the calling
environment. The IN OUT mode means that a value is passed into the subprogram.
The subprogram may change the value and pass the value out to the calling
environment.

5. How does a function differ from a procedure?
A function must execute a RETURN statement that returns a value. Functions are
called differently than procedures. They are called as an expression embedded
within another command. Procedures are called as statements.

6. What are the two main components of a PL/SQL package?
The package body and package specification

a. In what order are they defined?
First the package specification and then the package body

b. Are both required?
No, only a package specification is required. A specification can exist without a
body, but a body cannot exist as valid without the specification.

Oracle Database 10g: Advanced PL/SQL A-2

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 1: Solutions (continued)

7. How does the syntax of a SELECT statement used within a PL/SQL block differ from a
SELECT statement issued in SQL*Plus?
The INTO clause is required with a SELECT statement that is in a PL/SQL
subprogram.

8. What is a record?
A record is a composite type that has internal components, which can be
manipulated individually. Use the RECORD data type to treat related but dissimilar
data as a logical unit.

9. What is an index-by table?
Index-by tables are a data structure declared in a PL/SQL block. It is similar to an
array and made of two components, the index and the data field. The data field is a
column of a scalar or record data type, which stores the INDEX BY table elements.

10. How are loops implemented in PL/SQL?
Looping constructs are used to repeat a statement or sequence of statements
multiple times. PL/SQL has three looping constructs:

- Basic loops that perform repetitive actions without overall conditions

- FOR loops that perform iterative control of actions based on a count

- WHILE loops that perform iterative control of actions based on a condition

11. How is branching logic implemented in PL/SQL?
You can change the logical flow of statements within the PL/SQL block with a
number of control structures. Branching logic is implemented within PL/SQL by
using the conditional IF statement or CASE expressions.

Cursor Basics

12. What is an explicit cursor?
The Oracle server uses work areas, called private SQL areas, to execute SQL
statements and to store processing information. You can use PL/SQL cursors to
name a private SQL area and access its stored information. Use explicit cursors to
individually process each row returned by a multiple-row SELECT statement.

13. Where do you define an explicit cursor?
A cursor is defined in the declarative section.

14. Name the five steps for using an explicit cursor.
Declare, Open, Fetch, Test for existing rows, and Close

15. What is the syntax used to declare a cursor?
CURSOR cursor_name IS SELECT_statement

Oracle Database 10g: Advanced PL/SQL A-3

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 1: Solutions (continued)

16. What does the FOR UPDATE clause do within a cursor definition?
The FOR UPDATE clause locks the rows selected in the SELECT statement definition
of the cursor.

17. What command opens an explicit cursor?
OPEN cursor_name;

18. What command closes an explicit cursor?
CLOSE cursor_name;

19. Name five implicit actions that a cursor FOR loop provides.
Declares a record structure to match the select list of the cursor; opens the cursor,
fetches from the cursor, exits the loop when the fetch returns no row, and closes the
cursor

20. Describe what the following cursor attributes do:
%ISOPEN: Returns a Boolean value indicating whether the cursor is open
%FOUND: Returns a Boolean value indicating whether the last fetch returned a
value
%NOTFOUND: Returns a Boolean value indicating whether the last fetch did not
return a value
%ROWCOUNT: Returns an integer indicating the number of rows fetched so far

Exceptions

21. An exception occurs in your PL/SQL block which is enclosed in another PL/SQL block.
What happens to this exception?
Control is passed to the exception handler. If the exception is handled in the inner
block, processing continues to the outer block. If the exception is not handled in the
inner block, an exception is raised in the outer block and control is passed to the
exception handler of the outer block. If neither the inner nor the outer block traps
the exception, the program ends unsuccessfully.

22. An exception handler is mandatory within a PL/SQL subprogram. (True/False)
False

23. What syntax do you use in the exception handler area of a subprogram?
EXCEPTION
 WHEN named_exception THEN
 statement[s];

 WHEN others THEN
 statement[s];
END;

Oracle Database 10g: Advanced PL/SQL A-4

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 1: Solutions (continued)

24. How do you code for a NO_DATA_FOUND error?
EXCEPTION
 WHEN no_data_found THEN
 statement[s];
END;

25. Name three types of exceptions.
User-defined, Oracle server predefined, and Oracle server non-predefined

26. To associate an exception identifier with an Oracle error code, what pragma do you use
and where?
Use the PRAGMA EXCEPTION_INIT and place the PRAGMA EXCEPTION_INIT in
the declarative section.

27. How do you explicitly raise an exception?
Use the RAISE statement or the raise_application_error procedure.

28. What types of exceptions are implicitly raised?
All Oracle server exceptions (predefined and non-predefined) are automatically
raised.

29. What does the RAISE_APPLICATION_ERROR procedure do?
Enables you to issue user-defined error messages from subprograms.

Dependencies

30. Which objects can a procedure or function directly reference?
Table, view, sequence, procedure, function, package specification, object
specification, and collection type

31. What are the two statuses that a schema object can have and where are they recorded?
The user_objects dictionary view contains a column called status. Its values are
VALID and INVALID.

32. The Oracle server automatically recompiles invalid procedures when they are called from
the same ______. To avoid compile problems with remote database calls, we can use the
________ model instead of the timestamp model.
database
signature

33. What data dictionary contains information on direct dependencies?
user_dependencies

34. What script do you run to create the views deptree and ideptree?
You use the utldtree.sql script.

Oracle Database 10g: Advanced PL/SQL A-5

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 1: Solutions (continued)

35. What does the deptree_fill procedure do and what are the arguments that you need
to provide?
The deptree_fill procedure populates the deptree and ideptree views to
display a tabular representation of all dependent objects, direct and indirect. You
pass the object type, object owner, and object name to the deptree_fill
procedure.

36. What does the dbms_output package do?
The dbms_output package enables you to send messages from stored procedures,
packages, and triggers.

37. How do you write “This procedure works.” from within a PL/SQL program by using
dbms_output?
DBMS_OUTPUT.PUT_LINE('This procedure works.');

38. What does dbms_sql do and how does this compare with Native Dynamic SQL?
dbms_sql enables you to embed dynamic DML, DDL, and DCL statements within
a PL/SQL program. Native dynamic SQL allows you to place dynamic SQL
statements directly into PL/SQL blocks. Native dynamic SQL in PL/SQL is easier to
use than dbms_sql, requires much less application code, and performs better.

Oracle Database 10g: Advanced PL/SQL A-6

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 2: Solutions

1. Determine the output of the following code snippet.
SET SERVEROUTPUT ON
BEGIN
 UPDATE orders SET order_status = order_status;
 FOR v_rec IN (SELECT order_id FROM orders)
 LOOP
 IF SQL%ISOPEN THEN
 DBMS_OUTPUT.PUT_LINE('TRUE – ' || SQL%ROWCOUNT);
 ELSE
 DBMS_OUTPUT.PUT_LINE('FALSE – ' || SQL%ROWCOUNT);
 END IF;
 END LOOP;
END;
/

Execute the code from the lab_02_01.sql file. It will show FALSE – 105 for
each row fetched.

2. Modify the following snippet of code to make better use of the FOR UPDATE clause
and improve the performance of the program.

DECLARE
 CURSOR cur_update
 IS SELECT * FROM customers
 WHERE credit_limit < 5000 FOR UPDATE;
BEGIN
 FOR v_rec IN cur_update
 LOOP
 IF v_rec IS NOT NULL THEN
 UPDATE customers
 SET credit_limit = credit_limit + 200
 WHERE customer_id = v_rec.customer_id;
 END IF;
 END LOOP;
END;
/

Oracle Database 10g: Advanced PL/SQL A-7

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 2: Solutions (continued)

Modify the file lab_02_02.sql file as shown below:

DECLARE
 CURSOR cur_update
 IS SELECT * FROM customers
 WHERE credit_limit < 5000 FOR UPDATE;
BEGIN
 FOR v_rec IN cur_update
 LOOP
 UPDATE customers
 SET credit_limit = credit_limit + 200
 WHERE CURRENT OF cur_update;
 END LOOP;
END;
/

Alternatively, you can execute the code from the sol_02_02.sql file.

1. Create a package specification that defines subtypes, which can be used for the
warranty_period field of the product_information table. Name this package
MY_TYPES. The type needs to hold the month and year for a warranty period.

CREATE OR REPLACE PACKAGE mytypes
IS
 TYPE typ_warranty
 IS RECORD (month POSITIVE, year PLS_INTEGER);
 SUBTYPE warranty IS typ_warranty; -- based on RECORD type
END mytypes;
/

4. Create a package named SHOW_DETAILS that contains two subroutines. The first
subroutine should show order details for the given order_id. The second subroutine
should show customer details for the given customer_id, including the customer Id,
first name, phone numbers, credit limit, and email address.

 Both the subroutines should use the cursor variable to return the necessary details.

CREATE OR REPLACE PACKAGE show_details AS

TYPE rt_order IS REF CURSOR RETURN orders%ROWTYPE;

TYPE typ_cust_rec IS RECORD
 (cust_id NUMBER(6), cust_name VARCHAR2(20),
 custphone customers.phone_numbers%TYPE,
 credit NUMBER(9,2), cust_email VARCHAR2(30));
TYPE rt_cust IS REF CURSOR RETURN typ_cust_rec;

PROCEDURE get_order(p_orderid IN NUMBER, p_cv_order IN OUT rt_order);

Oracle Database 10g: Advanced PL/SQL A-8

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 2: Solutions (continued)
PROCEDURE get_cust(p_custid IN NUMBER, p_cv_cust IN OUT rt_cust);
END show_details;
/

CREATE OR REPLACE PACKAGE BODY show_details AS
PROCEDURE get_order
 (p_orderid IN NUMBER, p_cv_order IN OUT rt_order)
IS
BEGIN
 OPEN p_cv_order FOR
 SELECT * FROM order
 WHERE order_id = p_orderid;
-- CLOSE p_cv_order
END;

PROCEDURE get_cust
 (p_custid IN NUMBER, p_cv_cust IN OUT rt_cust)
IS
BEGIN
 OPEN p_cv_cust FOR
 SELECT customer_id, cust_first_name, phone_numbers, credit_limit,
 cust_email FROM customers
 WHERE customer_id = p_custid;
-- CLOSE p_cv_cust
END;
END;
/

Alternatively, you can execute the code from the sol_02_04.sql file.

Oracle Database 10g: Advanced PL/SQL A-9

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 3: Solutions

Collection Analysis

1. Examine the following definitions. Run the lab_03_01.sql script to create these
objects.

CREATE TYPE typ_item AS OBJECT --create object
 (prodid NUMBER(5),
 price NUMBER(7,2))
/
CREATE TYPE typ_item_nst -- define nested table type
 AS TABLE OF typ_item
/
CREATE TABLE POrder (-- create database table
 ordid NUMBER(5),
 supplier NUMBER(5),
 requester NUMBER(4),
 ordered DATE,
 items typ_item_nst)
 NESTED TABLE items STORE AS item_stor_tab
/
@lab_03_01

2. The code shown below generates an error. Run the lab_03_02.sql script to generate
and view the error.

BEGIN
 -- Insert an order
 INSERT INTO pOrder
 (ordid, supplier, requester, ordered, items)
 VALUES (1000, 12345, 9876, SYSDATE, NULL);
 -- insert the items for the order created
 INSERT INTO TABLE (SELECT items
 FROM pOrder
 WHERE ordid = 1000)
 VALUES(typ_item(99, 129.00));
END;
/
@lab_03_02

Why is the error occurring?

The error: ORA-22908: reference to NULL table value is resulting from setting the
table columns to NULL.

Oracle Database 10g: Advanced PL/SQL A-10

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 3: Solutions (continued)

How can you fix the error?

Always use a nested table’s default constructor to initialize it:

TRUNCATE TABLE pOrder;

-- A better approach is to avoid setting the table
-- column to NULL, and instead, use a nested table's
-- default constructor to initialize
BEGIN
 -- Insert an order
 INSERT INTO pOrder
 (ordid, supplier, requester, ordered, items)
 VALUES (1000, 12345, 9876, SYSDATE,
 typ_item_nst(typ_item(99, 129.00)));
END;
/

-- However, if the nested table is set to NULL, you can
-- use an UPDATE statement to set its value.
BEGIN
 -- Insert an order
 INSERT INTO pOrder
 (ordid, supplier, requester, ordered, items)
 VALUES (1000, 12345, 9876, SYSDATE, null);
 -- Once the nested table is set to null, use the update
 -- update statement
 UPDATE pOrder
 SET items = typ_item_nst(typ_item(99, 129.00))
 WHERE ordid = 1000
END;
/

Oracle Database 10g: Advanced PL/SQL A-11

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 3: Solutions (continued)

3. Examine the following code. This code produces an error. Which line causes the error,
and how do you fix it? (Note: You can run the lab_03_03.sql script to view the
error output).

DECLARE
 TYPE credit_card_typ
 IS VARRAY(100) OF VARCHAR2(30);
 v_mc credit_card_typ := credit_card_typ();
 v_visa credit_card_typ := credit_card_typ();
 v_am credit_card_typ;
 v_disc credit_card_typ := credit_card_typ();
 v_dc credit_card_typ := credit_card_typ();
BEGIN
 v_mc.EXTEND;
 v_visa.EXTEND;
 v_am.EXTEND;
 v_disc.EXTEND;
 v_dc.EXTEND;
END;
/

This causes an ORA-06531: Reference to uninitialized collection. To fix it, initialize
the v_am variable by using the same technique as the others:

DECLARE
 TYPE credit_card_typ
 IS VARRAY(100) OF VARCHAR2(30);

 v_mc credit_card_typ := credit_card_typ();
 v_visa credit_card_typ := credit_card_typ();
 v_am credit_card_typ := credit_card_typ();
 v_disc credit_card_typ := credit_card_typ();
 v_dc credit_card_typ := credit_card_typ();

BEGIN
 v_mc.EXTEND;
 v_visa.EXTEND;
 v_am.EXTEND;
 v_disc.EXTEND;
 v_dc.EXTEND;
END;
/

Oracle Database 10g: Advanced PL/SQL A-12

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 3: Solutions (continued)

In the following practice exercises, you will implement a nested table column in the
CUSTOMERS table and write PL/SQL code to manipulate the nested table.

4. Create a nested table to hold credit card information.

 Create an object type called typ_cr_card. It should have the following specification:

card_type VARCHAR2(25)
card_num NUMBER

Create a nested table type called typ_cr_card_nst that is a table of typ_cr_card.

CREATE TYPE typ_cr_card AS OBJECT --create object
 (card_type VARCHAR2(25),
 card_num NUMBER);
/
CREATE TYPE typ_cr_card_nst -- define nested table type
 AS TABLE OF typ_cr_card;
/

 Add a column to the CUSTOMERS table called credit_cards. Make this column a nested
table of type typ_cr_card_nst. You can use the following syntax:

ALTER TABLE customers ADD
 credit_cards typ_cr_card_nst
 NESTED TABLE credit_cards STORE AS c_c_store_tab;

5. Create a PL/SQL package that manipulates the credit_cards column in the
CUSTOMERS table.

 Open the lab_03_05.sql file. It contains the package specification and part of the
package body. Complete the code so that the package:

• Inserts credit card information (the credit card name and number for a specific
customer.)

• Displays credit card information in an unnested format.

CREATE OR REPLACE PACKAGE credit_card_pkg
IS
 PROCEDURE update_card_info
 (p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no VARCHAR2);

 PROCEDURE display_card_info
 (p_cust_id NUMBER);
END credit_card_pkg; -- package spec
/

Oracle Database 10g: Advanced PL/SQL A-13

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 3: Solutions (continued)

CREATE OR REPLACE PACKAGE BODY credit_card_pkg
IS
 PROCEDURE update_card_info
 (p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no VARCHAR2)
 IS
 v_card_info typ_cr_card_nst;
 i INTEGER;
 BEGIN
 SELECT credit_cards
 INTO v_card_info
 FROM customers
 WHERE customer_id = p_cust_id;
 IF v_card_info.EXISTS(1) THEN -- cards exist, add more
 i := v_card_info.LAST;
 v_card_info.EXTEND(1);
 v_card_info(i+1) := typ_cr_card(p_card_type, p_card_no);
 UPDATE customers
 SET credit_cards = v_card_info
 WHERE customer_id = p_cust_id;
 ELSE -- no cards for this customer yet, construct one
 UPDATE customers
 SET credit_cards = typ_cr_card_nst
 (typ_cr_card(p_card_type, p_card_no))
 WHERE customer_id = p_cust_id;
 END IF;
 END update_card_info;

 PROCEDURE display_card_info
 (p_cust_id NUMBER)
 IS
 v_card_info typ_cr_card_nst;
 i INTEGER;
 BEGIN
 SELECT credit_cards
 INTO v_card_info
 FROM customers
 WHERE customer_id = p_cust_id;
 IF v_card_info.EXISTS(1) THEN
 FOR idx IN v_card_info.FIRST..v_card_info.LAST LOOP
 DBMS_OUTPUT.PUT('Card Type: ' || v_card_info(idx).card_type || ' ');
 DBMS_OUTPUT.PUT_LINE('/ Card No: ' || v_card_info(idx).card_num);
 END LOOP;
 ELSE
 DBMS_OUTPUT.PUT_LINE('Customer has no credit cards.');
 END IF;
 END display_card_info;
END credit_card_pkg; -- package body
/

Oracle Database 10g: Advanced PL/SQL A-14

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 3: Solutions (continued)

6. Test your package with the following statements and output:
SET SERVEROUT ON

EXECUTE credit_card_pkg.display_card_info(120)
Customer has no credit cards.
PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.update_card_info –
 (120, 'Visa', 11111111)
PL/SQL procedure successfully completed.

SELECT credit_cards
FROM customers
WHERE customer_id = 120;

CREDIT_CARDS(CARD_TYPE, CARD_NUM)

TYP_CR_CARD_NST(TYP_CR_CARD('Visa', 11111111))

EXECUTE credit_card_pkg.display_card_info(120)
Card Type: Visa / Card No: 11111111
PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.update_card_info –
 (120, 'MC', 2323232323)
PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.update_card_info –
 (120, 'DC', 4444444)
PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.display_card_info(120)
Card Type: Visa / Card No: 11111111
Card Type: MC / Card No: 2323232323
Card Type: DC / Card No: 4444444
PL/SQL procedure successfully completed.

Oracle Database 10g: Advanced PL/SQL A-15

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 3: Solutions (continued)

7. Write a SELECT statement against the CREDIT_CARDS column to unnest the data. Use
the TABLE expression.

 For example, if the SELECT statement returns:

SELECT credit_cards
FROM customers
WHERE customer_id = 120;

CREDIT_CARDS(CARD_TYPE, CARD_NUM)
--
TYP_CR_CARD_NST(TYP_CR_CARD('Visa', 11111111), TYP_CR_CARD('MC',
2323232323), TYP_CR_CARD('DC', 4444444))

-- Use the table expression so that the result is:

CUSTOMER_ID CUST_LAST_NAME CARD_TYPE CARD_NUM
----------- --------------- ------------- -----------
 120 Higgins Visa 11111111
 120 Higgins MC 2323232323
 120 Higgins DC 4444444

SELECT c1.customer_id, c1.cust_last_name, c2.*
FROM customers c1, TABLE(c1.credit_cards) c2
WHERE customer_id = 120;

Oracle Database 10g: Advanced PL/SQL A-16

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 4: Solutions

1. An external C routine definition is created for you. The .c file is stored in the
$HOME/labs directory on the database server. This function returns the tax amount
based on the total sales figure passed to it as a parameter. The name of the .c file is
named as calc_tax.c. The shared object filename is calc_tax.so. The
function is defined as:

calc_tax(n)
 int n;
 {
 int tax;
 tax=(n*8)/100;
 return(tax);
 }

a. Create a calc_tax.so file using the following command:

cc –shared –o calc_tax.so calc_tax.c

b. Copy the file calc_tax.so to $ORACLE_HOME/bin directory using the
following command:

cp calc_tax.so $ORACLE_HOME/bin

c. Log in to SQL*Plus. Create the library object. Name the library object c_code and
define its path as:

CREATE OR REPLACE LIBRARY c_code AS '$ORACLE_HOME/bin/calc_tax.so';

d. Create a function named call_c to publish the external C routine. This fuction has
one numeric parameter and it returns a binary integer. Identify the AS LANGUAGE,
LIBRARY, and NAME clauses of the function.

CREATE OR REPLACE FUNCTION call_c
(x BINARY_INTEGER)
RETURN BINARY_INTEGER
AS LANGUAGE C
LIBRARY c_code
NAME "calc_tax";
/

Oracle Database 10g: Advanced PL/SQL A-17

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 4: Solutions (continued)

e. Create a procedure to call the call_c function created in the the previous step.
Name this procedure c_output. It has one numeric parameter. Include a
DBMS_OUTPUT.PUT_LINE statement so that you can view the results returned
from your C function.

CREATE OR REPLACE PROCEDURE c_output
 (p_in IN BINARY_INTEGER)
IS
 i BINARY_INTEGER;
BEGIN
 i := call_c(p_in);
 DBMS_OUTPUT.PUT_LINE('The total tax is: ' || i);
END c_output;
/

f. Set the serveroutput ON.

SET SERVEROUTPUT ON

g. Execute the c_output procedure.

EXECUTE c_output(1000000)
The total tax is: 8000

PL/SQL procedure successfully completed.

Oracle Database 10g: Advanced PL/SQL A-18

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 4: Solutions (continued)

2. A Java method definition is created for you. The method accepts a 16-digit credit card
number as the argument and returns the formatted credit card number (4 digits
followed by a space). The .java file is stored in your $HOME/labs directory. The
name of the .class file is FormatCreditCardNo.class. The method is defined
as:

public class FormatCreditCardNo
{
 public static final void formatCard(String[] cardno)
 {
 int count=0, space=0;
 String oldcc=cardno[0];
 String[] newcc= {""};
 while (count<16)
 {
 newcc[0]+= oldcc.charAt(count);
 space++;
 if (space ==4)
 { newcc[0]+=" "; space=0; }
 count++;
 }
 cardno[0]=newcc [0];
 }
}

a. Load the .java source file. From the operating system, type:

loadjava –user oe/oe FormatCreditCardNo.java

b. Publish the Java class method by defining a PL/SQL procedure named
CCFORMAT. This procedure accepts one IN OUT parameter.

Use the following definition for the NAME parameter:
 NAME 'FormatCreditCardNo.formatCard(java.lang.String[])';

Create a file named ccformat.sql and enter the following code.

CREATE OR REPLACE PROCEDURE ccformat
(x IN OUT VARCHAR2)
AS LANGUAGE JAVA
NAME 'FormatCreditCardNo.formatCard(java.lang.String[])';
/

 Save ccformat.sql.

Oracle Database 10g: Advanced PL/SQL A-19

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 4: Solutions (continued)

c. Execute the Java class method. Define a SQL*Plus variable, intialize it, run the
ccformat.sql file and use the execute command to execute the ccformat
procedure. Finally, print the SQL*Plus variable.

VARIABLE x VARCHAR2(20)
EXECUTE :x := '1234567887654321'
PL/SQL procedure successfully completed.

@ccformat
Procedure created.

EXECUTE ccformat(:x)
PL/SQL procedure successfully completed.

PRINT x
X
--
1234 5678 8765 4321

Oracle Database 10g: Advanced PL/SQL A-20

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 5: Solutions

1. Create a PL/SQL server page to display order information. The name of the procedure
that you are creating is show_orders.

a. Open the lab_05_01.psp file. This file contains some HTML code.

b. At the top of the file, include these directives:
<%@ page language="PL/SQL" %>
<%@ plsql procedure="show_orders" %>

c. Use the following SQL statement to retrieve the order details. Place the following
statement in the FOR loop:

SELECT order_id, order_mode, customer_id, order_status,
 order_total, call_c(order_total) tax, sales_rep_id
FROM orders
ORDER BY order_id;

d. Load the PSP file from $HOME/labs, type:

loadpsp –replace –user oe/oe lab_05_01.psp

Note: If the HTTP Server is not started, please start it using the following command:

opmnctl startall

e. From your browser, request the show_orders PSP as shown below.

Open sol_05_01.psp to see the modified code.

Oracle Database 10g: Advanced PL/SQL A-21

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 5: Solutions (continued)

2. Create a PL/SQL server page to display the following customer information:
CUSTOMER_ID
CUST_FIRST_NAME
CUST_LAST_NAME
CREDIT_LIMIT
CUST_EMAIL

The name of the procedure is SHOW_CUST and you need to pass the CUSTOMER_ID as
the parameter.

a. Open the lab_05_02a.psp file. This file contains some HTML code.

b. At the top of the file, include these directives:

<%@ page language="PL/SQL" %>
<%@ plsql procedure="show_cust" %>
<%@ plsql parameter="custid" %> type="NUMBER" default="101" %>

c. Place the parameter as shown in the following command:

<p>Following are the details for the Customer ID <%= custid %>

d. Use the following SQL statement to retrieve customer information. Place this
statement in the FOR loop within the lab_05_02a.psp file.

SELECT * FROM customers WHERE customer_id = custid;

Note: You can access the sol_05_02a.psp file for the modified code.

e. Load the PSP file from $HOME/labs, type:

loadpsp –replace –user oe/oe lab_05_02a.psp

f. From the browser, request the show_cust PSP. By default it will show details for
CUSTOMER_ID 101 because that is the specified default value.

Oracle Database 10g: Advanced PL/SQL A-22

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 5: Solutions (continued)

g. To see details for other customers, pass the parameter as shown below.

h. To create an HTML form for calling the PSP, open lab_05_02b.psp and add the
highlighted details.

<%@ page language="PL/SQL" %>
<%@ plsql procedure="show_cust_call" %>
<%@ plsql parameter="custid" %> type="NUMBER" default="101" %>
<HTML>
<BODY>
<form method=”POST” action=”show_cust”>
<p>Enter the Customer ID:
<input type=”text” name=”custid”>
<input type=”submit” value=”Submit”>
</form>
</BODY>
</HTML>

i. Save the PSP file.

Note: You can access the sol_05_02b.psp file for the modified code.

j. Load the PSP file from $HOME/labs, and enter:

loadpsp –replace –user oe/oe lab_05_02b.psp

Oracle Database 10g: Advanced PL/SQL A-23

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 5: Solutions (continued)

k. From the browser, request show_cust_call PSP. Enter the Customer ID and
click the Submit button.

l. Note that the form in turn calls the show_cust PSP and then displays the details.

Oracle Database 10g: Advanced PL/SQL A-24

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 6: Solutions

In this practice you will define an application context and security policy to implement the
policy: “Sales Representatives can see their own order information only in the ORDERS table.”
You will create sales representative IDs to test the success of your implementation.

Examine the definition of the ORDERS table, and the sales representative’s data:

1. Examine, then run the lab_06_01.sql script.

 This script will create the sales representative’s ID accounts with appropriate privileges
to access the database:

CONNECT /AS sysdba

CREATE USER sr153 IDENTIFIED BY oracle
 DEFAULT TABLESPACE USERS
 TEMPORARY TABLESPACE TEMP
 QUOTA UNLIMITED ON USERS;

CREATE USER sr154 IDENTIFIED BY oracle
 DEFAULT TABLESPACE USERS
 TEMPORARY TABLESPACE TEMP
 QUOTA UNLIMITED ON USERS;

...

CREATE USER sr163 IDENTIFIED BY oracle
 DEFAULT TABLESPACE USERS
 TEMPORARY TABLESPACE TEMP
 QUOTA UNLIMITED ON USERS;

GRANT create session
 , alter session
 TO sr153, sr154, sr155, sr156, sr158, sr159,
 sr160, sr161, sr163;
GRANT SELECT, INSERT, UPDATE, DELETE ON
 oe.orders TO sr153, sr154, sr155, sr156, sr158,
 sr159, sr160, sr161, sr163;
GRANT SELECT, INSERT, UPDATE, DELETE ON
 oe.order_items TO sr153, sr154, sr155, sr156, sr158,
 sr159, sr160, sr161, sr163;

CREATE PUBLIC SYNONYM orders FOR oe.orders;
CREATE PUBLIC SYNONYM orders FOR oe.order_items;

CONNECT oe/oe

@lab_06_01.sql

Oracle Database 10g: Advanced PL/SQL A-25

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 6: Solutions (continued)

2. Set up an application context:

 Connect to the database as SYSDBA before creating this context.

 Create an application context named sales_orders_ctx.

 Associate this context to the oe.sales_orders_pkg.

CONNECT /AS sysdba

CREATE CONTEXT sales_orders_ctx
USING oe.sales_orders_pkg;

3. Connect as OE/OE.

 Examine this package specification:

CREATE OR REPLACE PACKAGE sales_orders_pkg
IS
 PROCEDURE set_app_context;
 FUNCTION the_predicate
 (p_schema VARCHAR2, p_name VARCHAR2)
 RETURN VARCHAR2;
END sales_orders_pkg; -- package spec
/

 Create this package specification and then the package body in the OE schema.

 When you create the package body, set up two constants as follows:

c_context CONSTANT VARCHAR2(30) := 'SALES_ORDER_CTX';
c_attrib CONSTANT VARCHAR2(30) := 'SALES_REP';

Use these constants in the SET_APP_CONTEXT procedure to set the application context
to the current user.

Oracle Database 10g: Advanced PL/SQL A-26

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 6: Solutions (continued)
CREATE OR REPLACE PACKAGE BODY sales_orders_pkg
IS
 c_context CONSTANT VARCHAR2(30) := 'SALES_ORDERS_CTX';
 c_attrib CONSTANT VARCHAR2(30) := 'SALES_REP';

PROCEDURE set_app_context
 IS
 v_user VARCHAR2(30);
BEGIN
 SELECT user INTO v_user FROM dual;
 DBMS_SESSION.SET_CONTEXT
 (c_context, c_attrib, v_user);
END set_app_context;

FUNCTION the_predicate
(p_schema VARCHAR2, p_name VARCHAR2)
RETURN VARCHAR2
IS
 v_context_value VARCHAR2(100) :=
 SYS_CONTEXT(c_context, c_attrib);
 v_restriction VARCHAR2(2000);
BEGIN
 IF v_context_value LIKE 'SR%' THEN
 v_restriction :=
 'SALES_REP_ID =
 SUBSTR(''' || v_context_value || ''', 3, 3)';
 ELSE
 v_restriction := null;
 END IF;
 RETURN v_restriction;
END the_predicate;

END sales_orders_pkg; -- package body
/

Oracle Database 10g: Advanced PL/SQL A-27

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 6: Solutions (continued)

4. Connect as SYSDBA and define the policy.

 Use DBMS_RLS.ADD_POLICY to define the policy.

 Use these specifications for the parameter values:
object_schema OE
object_name ORDERS
policy_name OE_ORDERS_ACCESS_POLICY
function_schema OE
policy_function SALES_ORDERS_PKG.THE_PREDICATE
statement_types SELECT, INSERT, UPDATE, DELETE
update_check FALSE,
enable TRUE);

CONNECT /as sysdba

DECLARE
BEGIN
 DBMS_RLS.ADD_POLICY (
 'OE',
 'ORDERS',
 'OE_ORDERS_ACCESS_POLICY',
 'OE',
 'SALES_ORDERS_PKG.THE_PREDICATE',
 'SELECT, INSERT, UPDATE, DELETE',
 FALSE,
 TRUE);
END;
/

5. Connect as SYSDBA and create a logon trigger to implement fine-grained access
control. You can call the trigger SET_ID_ON_LOGON. This trigger causes the
context to be set as each user is logged on.

CONNECT /as sysdba

CREATE OR REPLACE TRIGGER set_id_on_logon
AFTER logon on DATABASE
BEGIN
 oe.sales_orders_pkg.set_app_context;
END;
/

Oracle Database 10g: Advanced PL/SQL A-28

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 6: Solutions (continued)

6. Test the fine-grained access implementation. Connect as your SR user and query the
ORDERS table. For example, your results should match:

CONNECT sr153/oracle

SELECT sales_rep_id, COUNT(*)
FROM orders
GROUP BY sales_rep_id;

SALES_REP_ID COUNT(*)
------------ ----------
 153 5

CONNECT sr154/oracle

SELECT sales_rep_id, COUNT(*)
FROM orders
GROUP BY sales_rep_id;

SALES_REP_ID COUNT(*)
------------ ----------
 154 10

Note

During debugging, you may need to disable or remove some of the objects created for this
lesson.

If you need to disable the logon trigger, issue the command:

ALTER TRIGGER set_id_on_logon DISABLE;

If you need to remove the policy you created, issue the command:

EXECUTE DBMS_RLS.DROP_POLICY('OE', 'ORDERS',-
'OE_ORDERS_ACCESS_POLICY')

Oracle Database 10g: Advanced PL/SQL A-29

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 7: Solutions

1. In this exercise, you will pin the fine-grained access package created in Lesson 6.

 Note: If you have not completed practice 6, run the following files in the $HOME/soln
folder:

@sol_06_02.sql
@sol_06_03.sql
@sol_06_04.sql
@sol_06_05.sql

Using the DBMS_SHARED_POOL.KEEP procedure, pin your SALES_ORDERS_PKG.

EXECUTE sys.dbms_shared_pool.keep('SALES_ORDERS_PKG')

Execute the DBMS_SHARED_POOL.SIZES procedure to see the objects in the shared
pool that are larger than 500 kilobytes.

SET SERVEROUTPUT ON
EXECUTE sys.dbms_shared_pool.sizes(500)

2. Open the lab_07_02.sql file and examine the package (the package body is shown
below):

CREATE OR REPLACE PACKAGE BODY credit_card_pkg
IS
 PROCEDURE update_card_info
 (p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no VARCHAR2)
 IS
 v_card_info typ_cr_card_nst;
 i INTEGER;
 BEGIN
 SELECT credit_cards
 INTO v_card_info
 FROM customers
 WHERE customer_id = p_cust_id;
 IF v_card_info.EXISTS(1) THEN -- cards exist, add more
 i := v_card_info.LAST;
 v_card_info.EXTEND(1);
 v_card_info(i+1) := typ_cr_card(p_card_type, p_card_no);
 UPDATE customers
 SET credit_cards = v_card_info
 WHERE customer_id = p_cust_id;
 ELSE -- no cards for this customer yet, construct one
 UPDATE customers
 SET credit_cards = typ_cr_card_nst
 (typ_cr_card(p_card_type, p_card_no))
 WHERE customer_id = p_cust_id;
 END IF;
 END update_card_info;
-- continued on next page

Oracle Database 10g: Advanced PL/SQL A-30

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 7: Solutions (continued)
-- continued from previous page.
 PROCEDURE display_card_info
 (p_cust_id NUMBER)
 IS
 v_card_info typ_cr_card_nst;
 i INTEGER;
 BEGIN
 SELECT credit_cards
 INTO v_card_info
 FROM customers
 WHERE customer_id = p_cust_id;
 IF v_card_info.EXISTS(1) THEN
 FOR idx IN v_card_info.FIRST..v_card_info.LAST LOOP
 DBMS_OUTPUT.PUT('Card Type: ' || v_card_info(idx).card_type
 || ' ');
 DBMS_OUTPUT.PUT_LINE('/ Card No: ' ||
 v_card_info(idx).card_num);
 END LOOP;
 ELSE
 DBMS_OUTPUT.PUT_LINE('Customer has no credit cards.');
 END IF;
 END display_card_info;
END credit_card_pkg; -- package body
/

This code needs to be improved. The following issues exist in the code:

• The local variables use the INTEGER data type.

• The same SELECT statement is run in the two procedures.

• The same IF v_card_info.EXISTS(1) THEN statement is in the two procedures.

Oracle Database 10g: Advanced PL/SQL A-31

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 7: Solutions (continued)

3. To improve the code, make the following modifications:

 Change the local INTEGER variables to use a more efficient data type.

 Move the duplicated code into a function. The package specification for the modification
is:

CREATE OR REPLACE PACKAGE credit_card_pkg
IS
 FUNCTION cust_card_info
 (p_cust_id NUMBER, p_card_info IN OUT typ_cr_card_nst)
 RETURN BOOLEAN;
 PROCEDURE update_card_info
 (p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no VARCHAR2);
 PROCEDURE display_card_info
 (p_cust_id NUMBER);
END credit_card_pkg; -- package spec
/

 Have the function return TRUE if the customer has credit cards. The function should
return FALSE if the customer does not have credit cards. Pass into the function an
uninitialized nested table. The function places the credit card information into this
uninitialized parameter.

CREATE OR REPLACE PACKAGE credit_card_pkg
IS
 FUNCTION cust_card_info
 (p_cust_id NUMBER, p_card_info IN OUT typ_cr_card_nst)
 RETURN BOOLEAN;

 PROCEDURE update_card_info
 (p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no VARCHAR2);

 PROCEDURE display_card_info
 (p_cust_id NUMBER);

END credit_card_pkg; -- package spec
/

-- continued on next page

Oracle Database 10g: Advanced PL/SQL A-32

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 7: Solutions (continued)
CREATE OR REPLACE PACKAGE BODY credit_card_pkg
IS
 FUNCTION cust_card_info
 (p_cust_id NUMBER, p_card_info IN OUT typ_cr_card_nst)
 RETURN BOOLEAN
 IS
 v_card_info_exists BOOLEAN;
 BEGIN
 SELECT credit_cards
 INTO p_card_info
 FROM customers
 WHERE customer_id = p_cust_id;
 IF p_card_info.EXISTS(1) THEN
 v_card_info_exists := TRUE;
 ELSE
 v_card_info_exists := FALSE;
 END IF;
 RETURN v_card_info_exists;
 END cust_card_info;

 PROCEDURE update_card_info
 (p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no VARCHAR2)
 IS
 v_card_info typ_cr_card_nst;
 i PLS_INTEGER;
 BEGIN
 IF cust_card_info(p_cust_id, v_card_info) THEN
 -- cards exist, add more
 i := v_card_info.LAST;
 v_card_info.EXTEND(1);
 v_card_info(i+1) := typ_cr_card(p_card_type, p_card_no);
 UPDATE customers
 SET credit_cards = v_card_info
 WHERE customer_id = p_cust_id;
 ELSE -- no cards for this customer yet, construct one
 UPDATE customers
 SET credit_cards = typ_cr_card_nst
 (typ_cr_card(p_card_type, p_card_no))
 WHERE customer_id = p_cust_id;
 END IF;
 END update_card_info;

-- continued on next page

Oracle Database 10g: Advanced PL/SQL A-33

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 7: Solutions (continued)
PROCEDURE display_card_info
 (p_cust_id NUMBER)
 IS
 v_card_info typ_cr_card_nst;
 i PLS_INTEGER;
 BEGIN
 IF cust_card_info(p_cust_id, v_card_info) THEN
 FOR idx IN v_card_info.FIRST..v_card_info.LAST LOOP
 DBMS_OUTPUT.PUT('Card Type: ' ||
 v_card_info(idx).card_type || ' ');
 DBMS_OUTPUT.PUT_LINE('/ Card No: ' ||
 v_card_info(idx).card_num);
 END LOOP;
 ELSE
 DBMS_OUTPUT.PUT_LINE('Customer has no credit cards.');
 END IF;
 END display_card_info;
END credit_card_pkg; -- package body
/

4. Test your modified code with the following data:
EXECUTE credit_card_pkg.update_card_info –
 (120, 'AM EX', 55555555555)
PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.display_card_info(120)
Card Type: Visa / Card No: 11111111
Card Type: MC / Card No: 2323232323
Card Type: DC / Card No: 4444444
Card Type: AM EX / Card No: 55555555555

PL/SQL procedure successfully completed.
-- Note: If you did not complete Practice 3, your results
-- will be:
EXECUTE credit_card_pkg.display_card_info(120)
Card Type: AM EX / Card No: 55555555555

PL/SQL procedure successfully completed.

Oracle Database 10g: Advanced PL/SQL A-34

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 7: Solutions (continued)

5. Open the lab_07_05a.sql file. It contains the modified code from the previous
question #3.

 You need to modify the UPDATE_CARD_INFO procedure to return information (using
the RETURNING clause) about the credit cards being updated. Assume that this
information will be used by another application developer in your team, who is writing a
graphical reporting utility on customer credit cards, after a customer’s credit card
information is changed.

 Modify the code to use the RETURNING clause to find information about the row
affected by the UPDATE statements.

CREATE OR REPLACE PACKAGE credit_card_pkg
IS
 FUNCTION cust_card_info
 (p_cust_id NUMBER, p_card_info IN OUT typ_cr_card_nst)
 RETURN BOOLEAN;

 (p_cust_id NUMBER, p_card_type VARCHAR2,

PROCEDURE update_card_info

 p_card_no VARCHAR2, o_card_info OUT typ_cr_card_nst);

 PROCEDURE display_card_info
 (p_cust_id NUMBER);

END credit_card_pkg; -- package spec
/

Oracle Database 10g: Advanced PL/SQL A-35

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 7: Solutions (continued)
... only the update_card_info procedure is changed in the body

PROCEDURE update_card_info
 (p_cust_id NUMBER, p_card_type VARCHAR2,
 p_card_no VARCHAR2, o_card_info OUT typ_cr_card_nst)
 IS
 v_card_info typ_cr_card_nst;
 i PLS_INTEGER;
 BEGIN
 IF cust_card_info(p_cust_id, v_card_info) THEN
 -- cards exist, add more
 i := v_card_info.LAST;
 v_card_info.EXTEND(1);
 v_card_info(i+1) := typ_cr_card(p_card_type, p_card_no);
 UPDATE customers
 SET credit_cards = v_card_info
 WHERE customer_id = p_cust_id
 RETURNING credit_cards INTO o_card_info;
 ELSE -- no cards for this customer yet, construct one
 UPDATE customers
 SET credit_cards = typ_cr_card_nst
 (typ_cr_card(p_card_type, p_card_no))
 WHERE customer_id = p_cust_id
 RETURNING credit_cards INTO o_card_info;
 END IF;
END update_card_info;
...

You can test your modified code with the following procedure (contained in
lab_07_05b.sql):

CREATE OR REPLACE PROCEDURE test_credit_update_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no NUMBER)
IS
 v_card_info typ_cr_card_nst;
BEGIN
 credit_card_pkg.update_card_info
 (p_cust_id, p_card_type, p_card_no, v_card_info);
END test_credit_update_info;
/

Oracle Database 10g: Advanced PL/SQL A-36

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 7: Solutions (continued)

 Test your code with the following statements set in boldface:

EXECUTE test_credit_update_info(125, 'AM EX', 123456789)
PL/SQL procedure successfully completed.
SELECT credit_cards FROM customers WHERE customer_id = 125;
CREDIT_CARDS(CARD_TYPE, CARD_NUM)

TYP_CR_CARD_NST(TYP_CR_CARD('AM EX', 123456789))

6. In this exercise, you will test exception handling with the SAVED EXCEPTIONS clause.

 Run the lab_07_06a.sql file to create a test table:

CREATE TABLE card_table
(accepted_cards VARCHAR2(50) NOT NULL);

 Open the lab_07_06b.sql file and run the contents:

DECLARE
 type typ_cards is table of VARCHAR2(50);
 v_cards typ_cards := typ_cards
 ('Citigroup Visa', 'Nationscard MasterCard',
 'Federal American Express', 'Citizens Visa',
 'International Discoverer', 'United Diners Club');
BEGIN
 v_cards.Delete(3);
 v_cards.DELETE(6);
 FORALL j IN v_cards.first..v_cards.last
 SAVE EXCEPTIONS
 EXECUTE IMMEDIATE
 'insert into card_table (accepted_cards) values (:the_card)'
 USING v_cards(j);
/

 Note the output: This returns an “Error in Array DML (at line 11),” which is not very
informational. The cause of this error is: one or more rows failed in the DML.

Oracle Database 10g: Advanced PL/SQL A-37

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 7: Solutions (continued)

6. (continued)

 Open the lab_07_06c.sql file and run the contents:

DECLARE
 type typ_cards is table of VARCHAR2(50);
 v_cards typ_cards := typ_cards
 ('Citigroup Visa', 'Nationscard MasterCard',
 'Federal American Express', 'Citizens Visa',
 'International Discoverer', 'United Diners Club');
 bulk_errors EXCEPTION;
 PRAGMA exception_init (bulk_errors, -24381);
BEGIN
 v_cards.Delete(3);
 v_cards.DELETE(6);
 FORALL j IN v_cards.first..v_cards.last
 SAVE EXCEPTIONS
 EXECUTE IMMEDIATE
 'insert into card_table (accepted_cards) values (:the_card)'
 USING v_cards(j);

 WHEN bulk_errors THEN
EXCEPTION

 FOR j IN 1..sql%bulk_exceptions.count
 LOOP
 Dbms_Output.Put_Line (
 TO_CHAR(sql%bulk_exceptions(j).error_index) || ':
 ' || SQLERRM(-sql%bulk_exceptions(j).error_code));
 END LOOP;
END;
/

Note the output:

ORA-22160: element at index [] does not exist

PL/SQL procedure successfully completed.

Why is the output different?

The PL/SQL block raises the exception 22160 when it encounters an array element
that was deleted. The exception is handled and the block completes successfully.

Oracle Database 10g: Advanced PL/SQL A-38

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 8: Solutions

In this exercise, you will profile the CREDIT_CARD_PKG package created in an earlier lesson.

1. Run the lab_08_01.sql script to create the CREDIT_CARD_PKG package.

@$HOME/labs/lab_08_01.sql

2. Run the proftab.sql script to create the profile tables under your schema.

@$HOME/labs/proftab.sql

3. Create a MY_PROFILER procedure to:

Start the profiler

Run the application

EXECUTE credit_card_pkg.update_card_info –
 (130, 'AM EX', 121212121212)

Flush the profiler data

Stop the profiler

CREATE OR REPLACE PROCEDURE my_profiler
(p_comment1 IN VARCHAR2, p_comment2 IN VARCHAR2)
IS
 v_return_code NUMBER;
BEGIN
--start the profiler
 v_return_code:=DBMS_PROFILER.START_PROFILER
 (p_comment1, p_comment2);
 dbms_output.put_line
 ('Result from START: '||v_return_code);

-- now run a program...
 credit_card_pkg.update_card_info (130, 'AM EX', 121212121212);
--flush the collected data to the dictionary tables
 v_return_code := DBMS_PROFILER.FLUSH_DATA;
 dbms_output.put_line
 ('Result from FLUSH: '||v_return_code);
--stop profiling
 v_return_code := DBMS_PROFILER.STOP_PROFILER;
 dbms_output.put_line
 ('Result from STOP: '||v_return_code);
END;
/

Oracle Database 10g: Advanced PL/SQL A-39

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 8: Solutions (continued)

4. Execute the MY_PROFILER procedure.

SET SERVEROUTPUT ON

EXECUTE my_profiler('Benchmark Run.' , 'This is the first run.')

5. Analyze the results of profiling in the PLSQL_PROFILER tables.

SELECT runid, run_owner, run_date, run_comment,
 run_comment1, run_total_time
FROM plsql_profiler_runs;

SELECT runid, unit_number, unit_type,
 unit_owner, unit_name
FROM plsql_profiler_units inner
JOIN plsql_profiler_runs
USING (runid);

SELECT line#, total_occur, total_time,
 min_time, max_time
FROM plsql_profiler_data
WHERE runid = 1 AND unit_number = 2;

In this exercise, you will trace the CREDIT_CARD_PKG package.

6. Enable the CREDIT_CARD_PKG for tracing by using the ALTER statement with the
COMPILE DEBUG option.

ALTER PACKAGE credit_card_pkg COMPILE DEBUG BODY;

7. Start the trace session and trace all calls.

EXECUTE DBMS_TRACE.SET_PLSQL_TRACE(DBMS_TRACE.trace_all_calls)

8. Run the credit_card_pkg.update_card_info procedure with the following
data:

EXECUTE credit_card_pkg.update_card_info –
 (135, 'DC', 987654321)

Oracle Database 10g: Advanced PL/SQL A-40

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Practice 8: Solutions (continued)

9. Disable tracing.

EXECUTE DBMS_TRACE.CLEAR_PLSQL_TRACE

10. Examine the trace information by querying the trace tables.

COLUMN event_comment format a28
COLUMN event_proc_name format a18
COLUMN proc_name format a17

SELECT proc_name, proc_line,
 event_proc_name, event_comment
FROM sys.plsql_trace_events
WHERE event_unit = 'CREDIT_CARD_PKG';

Oracle Database 10g: Advanced PL/SQL A-41

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

Table Descriptions

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL B-2

Schema Descriptions
Overall Description
The sample company portrayed by the Oracle Database Sample Schemas operates worldwide to
fulfil orders for several different products. The company has several divisions:

• The Human Resources division tracks information about the employees and facilities of the
company.

• The Order Entry division tracks product inventories and sales of the products of the
company through various channels.

• The Sales History division tracks business statistics to facilitate business decisions.
Each of these divisions is represented by a schema. In this course, you have access to the objects
in all of these schemas. However, the emphasis of the examples, demonstrations, and practices
utilize the Order Entry (OE) schema.
All scripts necessary to create the sample schemas reside in the
$ORACLE_HOME/demo/schema/ folder.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL B-3

Schema Descriptions (continued)
Order Entry (OE)
The company sells several categories of products, including computer hardware and software,
music, clothing, and tools. The company maintains product information that includes product
identification numbers, the category into which the product falls, the weight group (for shipping
purposes), the warranty period if applicable, the supplier, the status of the product, a list price, a
minimum price at which a product will be sold, and a URL for manufacturer information.
Inventory information is also recorded for all products, including the warehouse where the
product is available and the quantity on hand. Because products are sold worldwide, the
company maintains the names of the products and their descriptions in different languages.
The company maintains warehouses in several locations to facilitate filling customer orders.
Each warehouse has a warehouse identification number, name, and location identification
number.
Customer information is tracked in some detail. Each customer is assigned an identification
number. Customer records include name, street address, city or province, country, phone
numbers (up to five phone numbers for each customer), and postal code. Some customers order
through the Internet, so e-mail addresses are also recorded. Because of language differences
among customers, the company records the NLS language and territory of each customer. The
company places a credit limit on its customers to limit the amount for which they can purchase at
one time. Some customers have account managers, whom the company monitors. We keep track
of a customer’s phone number. These days, we never know how many phone numbers a
customer might have, but we try to keep track of all of them. Because of the language
differences of the customers, we identify the language and territory of each customer.
When a customer places an order, the company tracks the date of the order, the mode of the
order, status, shipping mode, total amount of the order, and the sales representative who helped
place the order. This may be the same individual as the account manager for a customer, it may
be different, or, in the case of an order over the Internet, the sales representative is not recorded.
In addition to the order information, we also track the number of items ordered, the unit price,
and the products ordered.
For each country in which it does business, the company records the country name, currency
symbol, currency name, and the region where the country resides geographically. This data is
useful to interact with customers living in different geographic regions around the world.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL B-4

Schema Descriptions (continued)
Order Entry (OE)

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL B-5

Schema Descriptions (continued)
Order Entry (OE) Row Counts

SELECT COUNT(*) FROM customers;
COUNT(*)

319

SELECT COUNT(*) FROM inventories;
COUNT(*)

1112

SELECT COUNT(*) FROM orders;
COUNT(*)

105

SELECT COUNT(*) FROM order_items;
COUNT(*)

665

SELECT COUNT(*) FROM product_descriptions;
COUNT(*)

8640

SELECT COUNT(*) FROM product_information;
COUNT(*)

288

SELECT COUNT(*) FROM warehouses;
COUNT(*)

9

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL B-6

Schema Descriptions (continued)
Human Resources (HR)
In the human resource records, each employee has an identification number, e-mail address, job
identification code, salary, and manager. Some employees earn a commission in addition to their
salary.
The company also tracks information about jobs within the organization. Each job has an
identification code, job title, and a minimum and maximum salary range for the job. Some
employees have been with the company for a long time and have held different positions within
the company. When an employee switches jobs, the company records the start date and end date
of the former job, the job identification number, and the department.
The sample company is regionally diverse, so it tracks the locations of not only its warehouses
but also of its departments. Each company employee is assigned to a department. Each
department is identified by a unique department number and a short name. Each department is
associated with one location. Each location has a full address that includes the street address,
postal code, city, state or province, and country code.
For each location where it has facilities, the company records the country name, currency
symbol, currency name, and the region where the country resides geographically.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL B-7

Schema Descriptions (continued)
Human Resources (HR) Row Counts

SELECT COUNT(*) FROM employees;
COUNT(*)

107

SELECT COUNT(*) FROM departments;
COUNT(*)

27

SELECT COUNT(*) FROM locations;
COUNT(*)

23

SELECT COUNT(*) FROM countries;
COUNT(*)

25

SELECT COUNT(*) FROM regions;
COUNT(*)

4

SELECT COUNT(*) FROM jobs;
COUNT(*)

19

SELECT COUNT(*) FROM job_history;
COUNT(*)

10

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Copyright © 2004, Oracle. All rights reserved.

Appendix C

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-2

Copyright © 2004, Oracle. All rights reserved.

JDeveloper

JDeveloper
Oracle JDeveloper 10g is an integrated development environment (IDE) for developing and
deploying Java applications and Web services. It supports every stage of the software
development life cycle (SDLC) from modeling to deploying. It has the features to use the latest
industry standards for Java, XML, and SQL while developing an application.
Oracle JDeveloper 10g initiates a new approach to J2EE development with the features that
enables visual and declarative development. This innovative approach makes J2EE development
simple and efficient.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-3

Copyright © 2004, Oracle. All rights reserved.

Connection Navigator

Connection Navigator
Using Oracle JDeveloper 10g, you can store the information necessary to connect to a database
in an object called “connection.” A connection is stored as part of the IDE settings, and can be
exported and imported for easy sharing among groups of users. A connection serves several
purposes from browsing the database and building applications, all the way through to
deployment.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-4

Copyright © 2004, Oracle. All rights reserved.

Application Navigator

Application Navigator
The Application Navigator gives you a logical view of your application and the data it contains.
The Application Navigator provides an infrastructure that the different extensions can plug into
and use to organize their data and menus in a consistent, abstract manner. While the Application
Navigator can contain individual files (such as Java source files), it is designed to consolidate
complex data. Complex data types such as entity objects, UML diagrams, EJB, or Web services
appear in this navigator as single nodes. The raw files that make up these abstract nodes appear
in the Structure window.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-5

Copyright © 2004, Oracle. All rights reserved.

Structure Window

Structure Window
The Structure window offers a structural view of the data in the document currently selected in
the active window of those windows that participate in providing structure: the navigators, the
editors and viewers, and the Property Inspector.
In the Structure window, you can view the document data in a variety of ways. The structures
available for display are based upon document type. For a Java file, you can view code structure,
UI structure, or UI model data. For an XML file, you can view XML structure, design structure,
or UI model data.
The Structure window is dynamic, tracking always the current selection of the active window
(unless you freeze the window’s contents on a particular view), as is pertinent to the currently
active editor. When the current selection is a node in the navigator, the default editor is assumed.
To change the view on the structure for the current selection, select a different structure tab.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-6

Copyright © 2004, Oracle. All rights reserved.

Editor Window

Editor Window
You can view your project files all in one single editor window, you can open multiple views of
the same file, or you can open multiple views of different files.
The tabs at the top of the editor window are the document tabs. Selecting a document tab gives
that file focus, bringing it to the foreground of the window in the current editor.
The tabs at the bottom of the editor window for a given file are the editor tabs. Selecting an
editor tab opens the file in that editor.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-7

Copyright © 2004, Oracle. All rights reserved.

Deploying Java Stored Procedures

Before deploying Java stored procedures, perform the
following steps:
1. Create a database connection.
2. Create a deployment profile.
3. Deploy the objects.

1 2 3

Deploying Java Stored Procedures
Create a deployment profile for Java stored procedures, then deploy the classes and, optionally,
any public static methods in JDeveloper using the settings in the profile.
Deploying to the database uses the information provided in the Deployment Profile Wizard and
two Oracle Database utilities:
• loadjava loads the Java class containing the stored procedures to an Oracle database.
• publish generates the PL/SQL call specific wrappers for the loaded public static

methods. Publishing enables the Java methods to be called as PL/SQL functions or
procedures.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-8

Copyright © 2004, Oracle. All rights reserved.

Publishing Java to PL/SQL

Publishing Java to PL/SQL
The slide shows the Java code and how to publish the Java code in a PL/SQL procedure.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-9

Copyright © 2004, Oracle. All rights reserved.

Creating Program Units

Skeleton of the function

Creating Program Units
To create a PL/SQL program unit:

1. Select View > Connection Navigator.
2. Expand Database and select a database connection.
3. In the connection, expand a schema.
4. Right-click a folder corresponding to the object type (Procedures, Packages, Functions).
5. Choose New PL/SQL object_type. The Create PL/SQL dialog box appears for the function,

package, or procedure.
6. Enter a valid name for the function, package, or procedure and click OK.

A skeleton definition will be created and opened in the Code Editor. You can then edit the
subprogram to suit your need.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-10

Copyright © 2004, Oracle. All rights reserved.

Compiling

Compilation with errors

Compilation without errors

Compiling
After editing the skeleton definition, you need to compile the program unit. Right-click the
PL/SQL object that you need to compile in the Connection Navigator and then select Compile.
Alternatively you can also press CTRL + SHIFT + F9 to compile. ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-11

Copyright © 2004, Oracle. All rights reserved.

Running a Program Unit

Running a Program Unit
To execute the program unit, right-click the object and click Run. The Run PL/SQL dialog box
will appear. You may need to change the NULL values with reasonable values that are passed
into the program unit. After you change the values, click OK. The output will be displayed in the
Message-Log window.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-12

Copyright © 2004, Oracle. All rights reserved.

Dropping a Program Unit

Dropping a Program Unit
To drop a program unit, right-click the object and select Drop. The Drop Confirmation dialog
box will appear; click Yes. The object will be dropped from the database. ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-13

Copyright © 2004, Oracle. All rights reserved.

Debugging PL/SQL Programs

JDeveloper support two types of debugging:
• Local
• Remote

You need the following privileges to perform PL/SQL
debugging:
• DEBUG ANY PROCEDURE

• DEBUG CONNECT SESSION

Debugging PL/SQL Programs
JDeveloper offers both local and remote debugging. A local debugging session is started by
setting breakpoints in source files, and then starting the debugger. Remote debugging requires
two JDeveloper processes: a debugger and a debuggee which may reside on a different
platform.
To debug a PL/SQL program it must be compiled in INTERPRETED mode. You cannot debug a
PL/SQL program that is compiled in NATIVE mode. This mode is set in the database’s
init.ora file.
PL/SQL programs must be compiled with the DEBUG option enabled. This option can be enabled
using various ways. Using SQL*Plus, execute ALTER SESSION SET PLSQL_DEBUG =
true to enable the DEBUG option. Then you can create or recompile the PL/SQL program you
want to debug. Another way of enabling the DEBUG option is by using the following command
in SQL*Plus:

ALTER <procedure, function, package> <name> COMPILE DEBUG;

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-14

Copyright © 2004, Oracle. All rights reserved.

Debugging PL/SQL Programs

Debugging PL/SQL Programs (continued)
Before you start with debugging, make sure that the Generate PL/SQL Debug Information check
box is selected. You can access the dialog box by using Tools > Preferences > Database
Connections.
Instead of manually testing PL/SQL functions and procedures as you may be accustomed to
doing from within SQL*Plus or by running a dummy procedure in the database, JDeveloper
enables you to test these objects in an automatic way. With this release of JDeveloper, you can
run and debug PL/SQL program units. For example, you can specify parameters being passed or
return values from a function giving you more control over what is run and providing you output
details about what was tested.
Note: The procedures or functions in the Oracle database can be either stand-alone or within a
package.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-15

Debugging PL/SQL Programs (continued)
To run or debug functions, procedures, and packages:

1. Create a database connection using the Database Wizard.
2. In the Navigator, expand the Database node to display the specific database username and

schema name.
3. Expand the Schema node.
4. Expand the appropriate node depending on what you are debugging: Procedure, Function,

or Package body.
5. (Optional for debugging only) Select the function, procedure, or package that you want to

debug and double-click to open it in the Code Editor.
6. (Optional for debugging only) Set a breakpoint in your PL/SQL code by clicking to the left

of the margin.
Note: The breakpoint must be set on an executable line of code. If the debugger does not stop,
the breakpoint may have not been set on an executable line of code (verify that the breakpoint
was verified). Also, verify that the debugging PL/SQL prerequisites were met. In particular,
make sure that the PL/SQL program is compiled in the INTERPRETED mode.

7. Make sure that either the Code Editor or the procedure in the Navigator is currently
selected.

8. Click the Debug toolbar button, or, if you want to run without debugging, click the Run
toolbar button.

9. The Run PL/SQL dialog box is displayed.
- Select a target that is the name of the procedure or function that you want to debug.

Note that the content in the Parameters and PL/SQL Block boxes change dynamically
when the target changes.

Note: You will have a choice of target only if you choose to run or debug a package that
contains more than one program unit.

• The Parameters box lists the target’s arguments (if applicable).
• The PL/SQL Block box displays code that was custom generated by JDeveloper for the

selected target. Depending on what the function or procedure does, you may need to
replace the NULL values with reasonable values so that these are passed into the
procedure, function, or package. In some cases, you may need to write additional code to
initialize values to be passed as arguments. In this case, you can edit the PL/SQL block text
as necessary.

10. Click OK to execute or debug the target.
11. Analyze the output information displayed in the Log window.

In the case of functions, the return value will be displayed. DBMS_OUTPUT messages will also
be displayed.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-16

Copyright © 2004, Oracle. All rights reserved.

Setting Breakpoints

Setting Breakpoints
Breakpoints help you to examine the values of the variables in your program. It is a trigger in a
program that, when reached, pauses program execution allowing you to examine the values of
some or all of the program variables. By setting breakpoints in potential problem areas of your
source code, you can run your program until its execution reaches a location you want to debug.
When your program execution encounters a breakpoint, the program pauses, and the debugger
displays the line containing the breakpoint in the Code Editor. You can then use the debugger to
view the state of your program. Breakpoints are flexible in that they can be set before you begin
a program run or at any time while you are debugging.
To set a breakpoint in the code editor, click the left margin next to a line of executable code.
Breakpoints set on comment lines, blank lines, declaration and any other non-executable lines of
code are not verified by the debugger and are treated as invalid.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-17

Copyright © 2004, Oracle. All rights reserved.

Stepping Through Code

Debug Resume

Stepping Through Code
After setting the breakpoint, start the debugger by clicking the Debug icon. The debugger will
pause the program execution at the point where the breakpoint is set. At this point you can check
the values of the variables. You can continue with the program execution by clicking the Resume
icon. The debugger will then move on to the next breakpoint. After executing all the breakpoints,
the debugger will stop the execution of the program and display the results in the Debugging –
Log area.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-18

Copyright © 2004, Oracle. All rights reserved.

Examining and Modifying Variables

Data window

Examining and Modifying Variables
When the debugging is ON, you can examine and modify the value of the variables using the
Data, Smart Data, and Watches windows. You can modify program data values during a
debugging session as a way to test hypothetical bug fixes during a program run. If you find that a
modification fixes a program error, you can exit the debugging session, fix your program code
accordingly, and recompile the program to make the fix permanent.
You use the Data window to display information about variables in your program. The Data
window displays the arguments, local variables, and static fields for the current context, which is
controlled by the selection in the Stack window. If you move to a new context, the Data window
is updated to show the data for the new context. If the current program was compiled without
debug information, you will not be able to see the local variables.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-19

Copyright © 2004, Oracle. All rights reserved.

Examining and Modifying Variables

Smart Data window

Examining and Modifying Variables (continued)
Unlike the Data window that displays all the variables in your program, the Smart Data window
displays only the data that is relevant to the source code that you are stepping through. ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-20

Copyright © 2004, Oracle. All rights reserved.

Examining and Modifying Variables

Watches window

Examining and Modifying Variables (continued)
A watch enables you to monitor the changing values of variables or expressions as your program
runs. After you enter a watch expression, the Watch window displays the current value of the
expression. As your program runs, the value of the watch changes as your program updates the
values of the variables in the watch expression.

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-21

Copyright © 2004, Oracle. All rights reserved.

Examining and Modifying Variables

Stack window

Examining and Modifying Variables (continued)
You can activate the Stack window by using View > Debugger > Stack. It displays the call stack
for the current thread. When you select a line in the Stack window, the Data window, Watch
window, and all other windows are updated to show data for the selected class.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL C-22

Copyright © 2004, Oracle. All rights reserved.

Examining and Modifying Variables

Classes window

Examining and Modifying Variables (continued)
The Classes window displays all the classes that are currently being loaded to execute the
program. If used with Oracle Java Virtual Machine (OJVM), it also shows the number of
instances of a class and the memory used by those instances.ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

D
Data Type Mappings

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

PL/SQL Data Type Supported External Types Default External Type

BINARY_INTEGER

BOOLEAN

PLS_INTEGER

[UNSIGNED] CHAR

[UNSIGNED] SHORT

[UNSIGNED] INT

[UNSIGNED] LONG

SB1, SB2, SB4

UB1, UB2, UB4

SIZE_T

INT

NATURALFoot 1

NATURALNFootref 1

POSITIVEFootref 1

POSITIVENFootref 1

SIGNTYPEFootref 1

[UNSIGNED] CHAR

[UNSIGNED] SHORT

[UNSIGNED] INT

[UNSIGNED] LONG

SB1, SB2, SB4

UB1, UB2, UB4

SIZE_T

UNSIGNED INT

FLOAT

REAL

FLOAT FLOAT

DOUBLE PRECISION DOUBLE DOUBLE

CHAR

CHARACTER

LONG

NCHAR

NVARCHAR2

ROWID

VARCHAR

VARCHAR2

STRING

OCISTRING

STRING

LONG RAW

RAW

RAW

OCIRAW

RAW

BFILE

BLOB

CLOB

NCLOB

OCILOBLOCATOR OCILOBLOCATOR

NUMBER

DECFootref 1

OCINUMBER OCINUMBER

 Oracle Database 10g: Advanced PL/SQL D-2

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

http://st-doc.us.oracle.com/10/101/appdev.101/b10795/
http://st-doc.us.oracle.com/10/101/appdev.101/b10795/adfns_ex.htm
http://st-doc.us.oracle.com/10/101/appdev.101/b10795/adfns_ex.htm

PL/SQL Data Type Supported External Types Default External Type

DECIMAL

INT

INTEGER

NUMERIC

SMALLINT

DATE OCIDATE OCIDATE

TIMESTAMP

TIMESTAMP WITH TIME

ZONE

TIMESTAMP WITH LOCAL

TIME ZONE

OCIDateTime

OCIDateTime

INTERVAL DAY TO SECOND

INTERVAL YEAR TO MONTH

OCIInterval OCIInterval

composite object types:

collections (varrays,

nested tables)

OCICOLL OCICOLL

 Oracle Database 10g: Advanced PL/SQL D-3

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Note: A bolded number or letter refers to an entire lesson or appendix.

A

ALL_ARGUMENTS 8-3, 8-11, 8-12

ALL_CONTEXT 6-21, 6-22

ALL_POLICIES 6-21, 6-22

Application context 6-8, 6-9, 6-10, 6-23, 6-24, 6-27

Associative arrays 3-2, 3-8, 3-11, 2-12, 3-35, 3-36, 3-39, 7-8, 7-23, 8-8, 8-9

B

Boolean 1-9, 2-5, 2-23, 3-32, 3-33, 5-7, 5-10, 6-16, 7-16, 8-17

Bulk binding 7-3, 7-8, 7-9, 7-11, 7-12

BULK COLLECT 1-17, 7-5, 7-11, 7-12, 8-5

C

C data types D

Callback 4-3

Callout 4-3

Collection exceptions 3-25, 3-26

Collections 3, 7-8, 7-23, 7-37, I-2, I-4

Conditional control statements 7-16

Constructor methods 3-2, 3-6

Context 1-6, 1-15, 4-14, 4-15, 6-6, 6-8, 6-9, 6-10, 6-11, 6-13, 6-14,

6-19, 7-8, 8-11, C-18

Cursor 1-2, 1-12, 1-13, 1-14, 1-15, 1-17, 1-18, 1-19, 1-20, 1-23,

1-24, 1-38, 2, 3-28, 4-17, 7-5, 7-6, 7-11, 7-12, 7-14,

7-28, 7-29, 8-30, I-2

Index

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL Index-2

D

DAD 5-11, 5-13

Data type conversion 4-13, 4-22, 7-18

DBMS_DESCRIBE 8-3, 8-8, 8-9, 8-11, 8-12

DBMS_SHARED_POOL 7-25, 7-26, 7-36, 7-37

DBMS_TRACE 8-20, 8-21, 8-23, 8-25, 8-26, 8-29, 8-37

DBMS_UTILITY 8-3, 8-13, 8-15, 8-16

DESCRIBE_PROCEDURE 8-3, 8-8, 8-9

Directive 1-12, 1-27, 5-4, 5-7, 5-13, 5-18

E

Encapsulate 3-3, 7-5, 7-7, 7-22

Error stack 8-15, 8-19

Exception 1-2, 1-3, 1-6, 1-7, 1-11, 1-12, 1-13, 1-14, 1-21, 1-22, 1-23, 1-24,

1-27, 1-28, 1-29, 1-30, 1-38, 2-7, 2-17, 2-29, 3-25,

3-26, 3-39, 4-5, 4-6, 4-7, 4-8, 7-3, 7-14, 7-15, 7-20,

7-21, 8-3, 8-5, 8-15, 8-16, 8-19, 8-22, 8-27

External Routines 4

Extproc 4-5, 4-6, 4-7, 4-8

Index

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL Index-3

F

Fine-grained access 6

FORALL 7-2, 7-3, 7-9, 7-12, 7-14, 7-15

Function syntax 1-6

G

H

I

Implementing a policy 6-13, 6-14, 6-16, 6-18, 6-19

Initializing collections 3-18, 3-19

Interpreted compilation 7-2, 7-32, 7-34

J

Java 4

Jdeveloper C

K

L

Library 4-3, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-12, 4-14, 4-16, 4-17, 4-19,

7-19, 7-32, 8-30

Libunit 4-3, 4-19, 4-21

Listener 4-5, 4-6, 4-7, 4-8

Logon trigger 6-13, 6-19, 6-27

Index

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL Index-4

M

Memory issues 7-2, 7-24

Mutually exclusive conditions 7-17

N

Native compilation 7-32, 7-34, 7-36

Nested table storage 3-15

Nested tables 3-8, 3-9, 3-11, 3-12, 3-15, 3-20, 3-31, 3-32, 3-33, 3-39, 7-8

O

Object methods 3-4

Object type columns 3-7

Object types 3-2, 3-3, 3-4, 3-5, 3-8, 3-13

P

Package syntax 1-11, 1-13, 1-14

Passing records 7-22

Persistent objects 3-3

Pinning 7-25, 7-26, 7-28, 7-37

PLSQL_TRACE_EVENTS 8-28, 8-29

PLSQL_TRACE_RUNS 8-28, 8-29

PL/SQL basic syntax 1

PL/SQL server pages 5

Policy 6-3, 6-4, 6-5, 6-6, 6-13, 6-14, 6-16, 6-18, 6-19, 6-22, 6-23, 6-24, 6-27

Policy groups 6-4, 6-23

POST 3-3, 3-4, 3-7, 5-11, 5-16, 7-20

PRAGMA 1-12, 1-27, 4-13, 7-15

Procedure syntax 1-5

Profiling 8-2, 8-24, 8-30, 8-31, 8-32, 8-33, 8-34, 8-35, 8-36, 8-38

Index

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL Index-5

Q

Querying collections 3-27, 3-28

R

Reducing network traffic 7-29, 7-30

REF CURSOR 2-8, 2-10, 2-11, 2-12, 2-13, 2-14, 2-18, 2-19, 2-21

Referencing collection elements 3-20

RETURNING clause 7-5, 7-12, 7-30, 7-36

S

Scriptlet 5-4, 5-7

Set operations 3-31, 3-32, 3-33, 3-34

Setting a context 6-11

SGA 7-7, 7-24

Shared pool 7-2, 7-24, 7-25, 7-26, 7-28, 7-36

Smaller executable sections 7-2, 7-3, 7-4

SQLERRM 7-15, 8-15, 8-16

Start tracing 8-20, 8-23, 8-25

String indexed arrays 3-35, 3-36, 3-37

Subtypes 1-13, 1-14, 2-2, 2-23, 2-24, 2-26, 2-27, 2-28, 2-29, 2-30, 2-31,

7-19, 7-20, 8-12

SYS_CONTEXT 6-6, 6-9

Index

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

Oracle Database 10g: Advanced PL/SQL Index-6

T

Table expression 3-27, 3-28, 3-30

Trace information 8-19, 8-23, 8-24, 8-26, 8-27, 8-28, 8-29

Trace level 8-22, 8-23, 8-25, 8-27

Transient objects 3-3

Traversing collections 3-22

Tuning issues 7

U

V

Varrays 3-8, 3-9, 3-11, 3-12, 3-20, 3-31, 3-39, 7-8

Virtual Private Database (VPD) 6

W

X

Y

Z

Index

ZUO GUO (zuoฺguo@rtd-denverฺcom) has a non-transferable license

to use this Student Guideฺ

Unauthorized reproduction or distribution prohibitedฺ Copyright© 2010, Oracle and/or its affiliatesฺ

	Cover Page
	Contents
	Preface
	Introduction
	Course Objectives
	Oracle Complete Solution
	Course Agenda
	Tables Used in This Course
	The Order Entry Schema
	The Human Resources Schema

	Lesson 1: PL/SQL Programming Concepts: Review
	Objectives
	PL/SQL Block Structure
	Naming Conventions
	Procedures
	Functions
	Function: Example
	Ways to Execute Functions
	Restrictions on Calling Functions from SQL Expressions
	Guidelines for Calling Functions from SQL Expressions
	PL/SQL Packages: Review
	Components of a PL/SQL Package
	Creating the Package Specification
	Creating the Package Body
	Cursor
	Processing Explicit Cursors
	Explicit Cursor Attributes
	Cursor FORLoops
	Cursor: Example
	Handling Exceptions
	Exceptions: Example
	Predefined Oracle Server Errors
	Trapping Non-Predefined Oracle Server Errors
	Trapping User-Defined Exceptions
	The RAISE_APPLICATION_ERROR Procedure
	Dependencies
	Displaying Direct and Indirect Dependencies
	Using Oracle-Supplied Packages
	Some of the Oracle Supplied Packages
	DBMS_OUTPUT Package
	UTL_FILE Package
	Summary

	Lesson 2: Design Considerations
	Objectives
	Guidelines for Cursor Design
	Cursor Variables
	Using a Cursor Variable
	Strong Versus Weak Cursors
	Step 1: Defining a REF CURSOR Type
	Step 1: Declaring a Cursor Variable
	Step 1: Declaring a REF CURSOR Return Type
	Step 2: Opening a Cursor Variable
	Step 3: Fetching from a Cursor Variable
	Step 4: Closing a Cursor Variable
	Passing Cursor Variables as Arguments
	Rules for Cursor Variables
	Comparing Cursor Variables with Static Cursors
	Predefined Data Types
	Subtypes
	Benefits of Subtypes
	Declaring Subtypes
	Using Subtypes
	Subtype Compatibility
	Summary
	Practice Overview

	Lesson 3: Working with Collections
	Objectives
	Understanding the Components of an Object Type
	Creating an Object Type
	Using an Object Type
	Using Constructor Methods
	Retrieving Data from Object Type Columns
	Understanding Collections
	Describing the Collection Types
	Listing Characteristics for Collections
	Using Collections Effectively
	Creating Collection Types
	Declaring Collections: Nested Table
	Understanding Nested Table Storage
	Declaring Collections: Varray
	Working with Collections in PL/SQL
	Initializing Collections
	Referencing Collection Elements
	Using Collection Methods
	Manipulating Individual Elements
	Avoiding Collection Exceptions
	Working with Collections in SQL
	Using Set Operations on Collections
	Using Multiset Operations on Collections
	Using String Indexed Associative Arrays
	Summary
	Practice Overview

	Lesson 4: Advanced Interface Methods
	Objectives
	Calling External Procedures from PL/SQL
	Benefits of External Procedures
	External C Procedure Components
	How PL/SQL Calls a C External Procedure
	The extproc Process
	The Listener Process
	Development Steps for External C Procedures
	The Call Specification
	Executing the External Procedure
	Overview of Java
	How PL/SQL Calls a Java Class Method
	Development Steps for Java Class Methods
	Loading Java Class Methods
	Publishing a Java Class Method
	Executing the Java Routine
	Creating Packages for Java Class Methods
	Summary
	Practice Overview

	Lesson 5: PL/SQL Server Pages
	Objectives
	PSP: Uses and Features
	Format of the PSP File
	Development Steps for PSP
	Printing the Table Using a Loop
	Specifying a Parameter
	Using an HTML Form to Call a PSP
	Debugging PSP Problems
	Summary
	Practice Overview

	Lesson 6: Fine-Grained Access Control
	Objectives
	Overview
	Identifying Fine-Grained Access Features
	How Fine-Grained Access Works
	Why Use Fine-Grained Access?
	Using an Application Context
	Creating an Application Context
	Setting a Context
	Implementing a Policy
	Step 2: Creating the Package
	Step 3: Defining the Policy
	Step 4: Setting Up a Logon Trigger
	Viewing Example Results
	Using Data Dictionary Views

	Lesson 7: Performance and Tuning
	Objectives
	Tuning PL/SQL Code
	Modularizing Your Code
	Comparing SQL with PL/SQL
	Using Bulk Binding
	Using SAVE EXCEPTIONS
	Handling FORALL Exceptions
	Rephrasing Conditional Control Statements
	Avoiding Implicit Data Type Conversion
	Using PLS_INTEGER Data Type for Integers
	Understanding the NOT NULL Constraint
	Passing Data Between PL/SQL Programs
	Identifying and Tuning Memory Issues
	Pinning Objects
	Identifying Network Issues
	Native and Interpreted Compilation
	Switching Between Native and Interpreted Compilation
	Summary
	Practice Overview

	Lesson 8: Analyzing PL/SQL Code
	Objectives
	Finding Coding Information
	Using DBMS_DESCRIBE
	Using ALL_ARGUMENTS
	Using DBMS_UTILITY.FORMAT_CALL_STACK
	Finding Error Information
	Tracing PL/SQL Execution
	Tracing PL/SQL: Steps
	Step 1: Enable Specific Subprograms
	Steps 2 and 3: Identify a Trace Level and Start Tracing
	Step 4: Turn Off Tracing
	Step 5: Examine the Trace Information
	plsql_trace_runs and plsql_trace_events
	Profiling PL/SQL Applications
	Profiling PL/SQL: Steps
	Profiling Example
	Summary
	Practice Overview

	Appendix A: Practice Solutions
	Practice 1: Solutions
	Practice 2: Solutions
	Practice 3: Solutions
	Practice 4: Solutions
	Practice 5: Solutions
	Practice 6: Solutions
	Practice 7: Solutions
	Practice 8: Solutions

	Appendix B: Table Descriptions
	Schema Descriptions

	Appendix C
	JDeveloper
	Connection Navigator
	Application Navigator
	Structure Window
	Editor Window
	Deploying Java Stored Procedures
	Publishing Java to PL/SQL
	Creating Program Units
	Compiling
	Running a Program Unit
	Dropping a Program Unit
	Debugging PL/SQL Programs
	Setting Breakpoints
	Stepping Through Code
	Examining and Modifying Variables

	Appendix D: Data Type Mappings
	Index

